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Review   

 
PhD Thesis Title: Deep Learning Methods for Automated Urban 

Monitoring System using Synthetic Aperture Radar  
 
 

Tytuł pracy w języku polskim: Metody głębokiego uczenia dla zautomatyzowanego systemu 

monitorowania obszarów miejskich z wykorzystaniem radaru  

 
 

The Ph.D Thesis , submitted by Mr I. Made Sandhi Wangiyana, has been done in English   

under supervision of  prof. dr hab. inż. Piotr Samczyńskiego at the Faculty of Electronics 

and Information Technology, Institute of Electronic Systems , Warsaw University of 

Technology . 

 

Structure of the Dissertation 

 

The dissertation consists of eight chapters , each with several sub chapters finished with 

results and conclusions  

 

The dissertation has a theoretical and empirical character, although the proportions between 

the two parts are not balanced. The theoretical part (comprising 1, 2, 3, 4 chapters numbers ) 

while the empirical part (number 5 to number 7 and number 8 as conclusions). 

 

Significance of the Addressed Issues 

The topic of the research is extremely important, as there is a great development of radar data 

and the importance of using the data for disasters is essential.  

In dissertation Mr Sandhi Wangiyana applies SAR as a source of data for automated analysis 

the disaster and urban monitoring. In this thesis, deep learning methods were explored for 

various urban analyses using SAR. The research provided by Mr Wangiyana has related to 

extraction of building footprints, large event detection from multitemporal data, and LULC 

classification. 
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Extreme efforts Mr Wangiyana made to cite and consider results from the literature in order to 

reach his own conclusions. 

In Chapter 1 Mr Wangiyana presents the validity of remote sensing applications in disaster 

management, presents the knowledge of optical data, gives examples of why optical data could 

not give enough information in disaster events and describes the advantages of active SAR 

instruments. In the same chapter Mr Wangiyana presents SAR ability for urban areas especially 

new growing infrastructures and the advantage of using these data for planners. 

Assumptions and Research Objectives 

Mr Wangiyana poses three  research goals which later he elaborated 

1/ It is possible to improve the classification of buildings footprints using the process of 

augmentation for the limited set of SAR images 

2/ It is possible to detect large event changes from multitemporal SAR images applying the 

autoencoder trained in an unsupervised way  

3/ It is possible to do classification of LULC using SAR single polarisation 

To achieve these goals, Deep Learning was considered to accomplish generalization.  

The aim of the research done by Mr Wangiyana was: 

• To evaluate and benchmark of the performance of state-of-the-art neural network 

architectures used in Computer Vision research on SAR data 

• To develop and validate of pre-processing methods for fitting large remote sensing data 

to reasonable sized neural networks  

• To experiment of various data augmentation strategies for radar images 

• To experiment of algorithms on various urban landscapes and acquisition modes 

To find the directions the PhD student used various publications on Deep Learning for SAR 

Applications and cited in the literature . 

In Chapter 2 Mr Wangiyana rewiews the SAR theory and image interpretation Detailed 

description of SAR Acquisition Modes, generation, history of SAR, Range and Azimuth 

Dimention and Polarimetry. Usual used the horizontal and vertical signals. In all description 

PhD student refer to the literature. As the SAR data consists of phase and amplitude  and in 

the process of comparison the phase differences of two different images of the same region 

and the same position but at different time, then the phase changes indicates movement or 

deformation of the surface. From the literature, Mr  Wangiyana noted: "The calculated SAR 

backscatter is a combination of the radar system's characteristics (frequency, polarization, 
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incidence angle with the characteristics of the surface  as roughness, topography, dielectric 

constant and  correlation length” .Then Mr Wangiyana made the explanation of surface 

roughness, speckle, geometric distortions, and refers to buildings and geometric distortion and 

what happens  when the walls of the buildings face the sensor will be projected to the ground 

in the direction of the radar and interpretation the effect of the shadow. The same happens 

with the mountains. 

In Chapter 3 Mr Wangiyana defines Deep Learning (DL) as the subset of Machine Learning 

(ML) and describes what is Artificial Intelligence and how is set their relationship and cites 

the reference. Then Mr Wangiyana explains classification task which can be categorized into 

binary class, multi-class and multi-label. The Deep Learning algorithms can be categorized  as 

supervised or unsupervised depending on learning process. Mr Wangiyana stated that Deep 

Learning is closely associated with Artificial Neural Network (ANN) consisting of multiple 

layers where learning is performed automatically building the complex layers. It is stated that 

the relationship between the data is most not linear  and that’s why non-linear transformations 

are offered to neurons. Mr Wangiyana gives the example of the flow from  input layer, to  

hidden layer and output layer when the network is trained using supervised learning ,  

It is important to minimize the error: then he explains reducing the error by updating the 

parameters and minimizing by taking the gradient. Mr Wangiyana states that in supervised 

classification the cross-entropy is usefull for optimizing the model. Strongly explains the 

methodology of Neural Network that will use later.  

Describes also the Convolution layer as a hidden layer that contains several convolution units 

in a convolutional neural network, which is used for feature extraction. It is important in the 

3D input for the feature map. Mr Wangiyana described the advantage of the segmentation 

models which divide the image into regions established  on similarity  

Mr Wangiyana discussed the Evaluation metrics where classification accuracy  in most cases 

is evaluated   by ground truth but cited the work when such method does not work due to class 

imbalance and categorized the predictions and errors. 

In Chapter 4 Mr Wangiyana described the Building Damage Assessment (BDA) what is 

described as the optimal emergency responses after disaster with two subproblems: (1) building 

localization and (2) damage classification. and presents the key findings and opportunities for 

future research. This is very important approach to select areas with higher concentration of  

damage. He gives the example of trapped people during the earthquake in Syria and Turkey. 

Mr Wangiyana gives indication of SAR involvement and describes three involved techniques 

including combining optical and post -event SAR data. He stressed that the interpretation of 
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damage  from SAR should consider the orientation of the building, geometric features of SAR 

and the surrounding environment. Mr Wangiyana is citing the articles of classification using 

BDA methods underlying that neural networks are powerful feature extractors. Based on 

literature Mr Wangiyana summaries that SAR and Deep Learning Methods are used for 

building unit damage assessment and importance in analysis of disaster to use open source data. 

The physical property of the surface causes changes in phase and amplitude of the 

electromagnetic wave  changes SAR data and the intensity , phase and polarimetry features are 

advantage source of information identifying the building changes. It is important to consider 

intensity and connected to it incidence angle and wave length and dielectric properties and 

roughness. The L shape pattern and shadow is presented before the disaster while destroyed 

building showed random patterns from the remaining debris.  Mr Wangiyana has cited the 

literature which describes such configuration.  

The difference on value of intensity of SAR images can be used in quantify ground changes 

caused by disaster. Mr Wangiyana made the discussion that SAR acquisitions  before the 

disaster could not be available and the post acquisition limited to single channel will not bring 

sufficient information .  

That’s why the data-driven approach, such as Neural Networks, is used to train reliable 

feature extractors for this intricate task. 

That’s why the ground change  detection applying Interferometric SAR by examining the 

phase has been proposed. The difference of coherence between pre-event and a post 

eventSAR is important. 

Mr Wangiyana discussed the polarization features sensitive to dielectric constants, physical 

properties, geometry and orientation of ground targets. Gives citation that the dual 

polarization as Sentinel 1 VV and VH gives higher accuracy than using one type of 

polarization. Full polarization (PolSAR)  provide information and the volume scattering can 

be derived from polarimetric decomposition as indicators and polarization coherence.used for 

characterizing surface roughness and polarimetric orientation angle for describing building 

orientation. So polarimetry features can be potential for indication damaged and undamaged 

structures. Features from individual buildings is difficult to identify that’s why it is better to 

use block-unit analysis.  

Mr Wangiyana indicated that there exists  openly available dataset which consists of full 

polarimetric airborne SAR data with 0.5 spatial resolution covering port Rotterdam This data 

– set has been the benchmark in SAR and Optical  procedures. 
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Deep Learning Methods are proposed to classify damage using optical images as example is 

the use of View2 applications.  

Using segmentation task, the RescueNet was proposed for joint segmentation and damage 

Mr Wangiyana stressed that the automating damage assessment lies in speed improvement . 

The Microsoft Lab proposed a model that is three times faster than the winning solution of 

View 2. Public dataset takes the role in training deep learning models but most use optical 

satellite data and as Mr Wangiyana  wrote, only a single dataset applying SAR (QuickQuake) 

is available.  

Mr Wangiyana has been investigating different ways of using satellites and different datasets 

for disaster assessment applications. Important is frequency and resolution of the data. The 

crucial role are the Sentinel1 A and soon C and D from Copernicus Programme allows fast 

mapping of damage after disaster. ICEYE is commercial radar satellite of X band (there are 

nearly 40 satellites, ALOS-2 from Japanese JAXA , with StripMap mode recently released as 

free for the EarthQuake in Japan.  Maxar offers both fresh high-resolution imagery and the 

world’s largest archive for historical analysis of VHR optical data used mainly for disaster 

events, recently at Turkey-Syria earthquake in 2023. Mr Wangiyana stated existance of, the 

International Charter on Space and Major Disasters which is  a cooperative agreement between 

the world’s major space agencies to pool their remote sensing satellites and archival imagery to 

aid countries whose people are impacted by natural or man-made disasters. There is no charge 

to the end users.  Exists also the Humanitarian OpenStreetMap Team, but often overestimate 

destroyed buildings. GlobalBuildingMap dataset covers global areas for temporal coverage 

between 2018 and 2019 with spatial resolution only 3m. what omits smaller buildings. On line 

available is Microsoft Building Footprint and Google with spatial resolution of 0,3 - 0,6m 

respectively.  

But what Mr Wangiyana pointed out that it is  important the availability of SAR  data before 

the disaster event and after what often data before does not exist. The level of damage is very 

complex and that’s why it is difficult to have details from the satellites. The ImageNet large 

scale Visual Recognition Challenge dataset is often used to evaluate developed deep learning 

models. 

Mr Wangiyana is concern about Future Directions. The simulating data have been 

developed applying SAR for urban areas, scientific analysis and georeferencing and may be 

used for sensor design, algorithm development and training.SAR simulators have been used in 

military and object detection. Mr Wangiyana draws attention on newly released Building3D 

dataset for open-source research could be useful for simulating an urban landscape. For the 
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future the post disaster building models can be used for simulating radar signatures from 

various damaged objects.  

Mr Wangiyana recommends to use methods which rely on less labeled data such as Self-

Supervised Learning (SSL). The trained model was evaluated and demonstrated 

generalization capability of SSL methods. 

Mr Wangiyana concluded that the lack of pre-event SAR data therefore deep learning 

methods are among the best solutions and for future research proposed the solutions as:  

Integrated data collection which should have high quality benchmark dataset; generating SAR 

simulators and post-disaster building damage models.   

In Chapter 5 the PhD student proposed SAR data augmentation as the solution to the limited 

SAR data sets comparing to optical data and to improve robustness from SAR specific 

features and selected augmentation features that improve detection from radar imagery and 

applied automated methods as Deep Learning using Convolution Neural Network.  

Mr Wangiyana cited that small area buildings ex in Asia were undetectable . The models were 

prforming well in European cities. Unfortunatelly not many datasets with VHR SAR data are 

available for public usage. Data Augmentation (DA) increases the set of possible data points 

and increasing generalization. Mr Wangiyana presents  the SpaceNet 6 which was dedicated 

to automatically extract building footprints with computer vision and artificial intelligence 

(AI) algorithms using a combination of SAR and electro-optical imagery datasets. This 

openly-licensed dataset features a unique combination of half-meter Synthetic Aperture Radar 

(SAR) imagery from Capella Space and half-meter optical (EO) imagery from Maxar’s 

WorldView 2 satellite.  

Mr Wangiyana described that for  training the Building Footprint Extractor algorithm, the HH 

polarization was used and the augmentation methods is presented. There are pixels belonging 

to building region and the rest of the pixels. The training and evaluation has been performed 

and statistics over each image has been done.  

Mr Wangiyana describes the  ablation study which  aims to determine the contribution of a 

component to an AI system by combinations of transformations which were applied to the 

component. 

Mr Wangiyana describes the Geometric Transformation and  the requirement of sharpening to 

improve the edge detection. Also Mr Wangiyana presented different speckle reduction filters 

to smooth the specle and presented the filtration results on an image. 

It was specified that the order of transformation is important when multiple augmentations are 

combined.  
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To prove the impact of augmentation method Mr Wangiyana presented  the experiment and 

concluded that the error between training and validation was lower when the augmentation 

method was used.  

Mr Wangiyana presented the experiment of several combinations of positive augmentation 

methods which were applied to the main training set and evaluated on validation set and 

stated that applying augmentation increases confidence, and increase in modeling more 

accurate shape.  

 

In Chapter 6 Mr Wangiyana proposed the autoencoder to detect large incidents  which cause 

the changes applying multitemporal SAR data of Sentinel1.  

The goal is to detect large event changes caused by various types of natural disasters. 

To make the identifications of the areas of changes,  Mr Wangiyana used pre and post images  

Change Detection is one of most important field in Remote Sensing where the disaster 

assessment could be evaluate by SAR due to penetration through clouds is much better than 

optical. Increase of  quantities of remote sensing data, conventional algorithms began to be 

replaced by neural networks.  

The autoencoder was used to learn representations of SAR data leading to a flood event. It was 

then used to predict changes from other disaster types by taking the distance of encodings in 

the space between bitemporal pairs of images as a measure of change. 

 

 Mr Wangiyana showed  the data collection method and cited the WorldFloods dataset 

which is a publicly available collection of satellite imagery of historical flood events from 

several existing databases in “machine-learning ready form” and also databases where the flood 

extent map was derived is CEMS, providing a catalog of emergency responses in 

relation to different types of disasters.  

The vector data derived through photo-interpretation is used as a reference for observed 

changes. 

The multitemporal SAR data collected over the Area of Interest (AOI) was attached in the 

vector package. The Sentinel1 were used with spatial resolution of 10m VV& VH . The 

floods, wildfires, and landslides were considered. 

 

Mr Wangiyana poses the test "whether the change detection algorithm trained to detect 

flood events can generalize to other large-scale natural events in different locations.”. 

Each event of floods, wildfires, and landslides has two locations.  
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Mr Wangiyana propose to transform pixel intensity values to present the changes.  

Difficulties are natural changes such as vegetation growth, and the presence of SAR 

speckle, can be challenging to develop the change detection algorithms. 

 

Mr Wangiyana trained autoencoder on five flood locations each with four temporal SAR 

images. Training aims to minimize the reconstruction loss which is the Mean Squared Error 

(MSE). 

The trained model was evaluated on six locations of three different types of events, utilizing 

the difference between encoded features from bitemporal pairs to measure the degree of 

change. 

 

The evaluation for floods was poorer than other events. This was due to a high number 

of false positives in surrounding agricultural areas, which most likely have a drop in 

backscatter due to increased moisture after heavy rains. 

For wildfires, the burnt areas have lower backscatter in both VH and VV channels  

The drop was not consistent throughout the whole labeled burnt area. Some parts had more 

decreases than others.  

Mr Wangiyana stated that the burnt area from wildfires in radar images does not show as 

clearly as in optical images.  

The effect of land movement results in landslides is a  prominent change of 

backscatter from the partial or total removal or modification of vegetation, which displays 

clear boundaries from unaffected areas. 

 

To Conclude:  

Mr Wangiyana proposed the unsupervised approach to detect general large event changes 

from multitemporal SAR images 

The autoencoder was trained to reconstruct pre-event SAR images and learn the underlying 

representations. The trained autoencoder was used to detect changes from bitemporal SAR 

pairs by computing the distance between their embeddings. 

 

In Chapter 7 Mr Wangiyana proposed the analysis of urban density which can be 

distinguished applying polarimetric SAR data and comparision of single polarization X band 
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and dual polarization C band. Mr Wangiyana used the Urban Atlas dataset as a reference and 

used unsupervised clustering and supervised segmentation methods. 

Mr Wangiyana came into conclusion that built-up structures induce strong backscatter and can 

be distinguished well on microwave imagery and urban mapping can be important from radar 

images. The different scattering of anthropogenic objects - buildings, concrete structures, roads, 

squares,  makes these surfaces distinguishable. 

 

In summary, it can be said that Mr Wangiyana provides an evaluation of  single polarization 

X-band and dual polarization C-band SAR data for LULC classification in urban areas.  

 

Features derived from the radar intensity data as texture and speckle divergence were used as 

input. 

There are the limitations of these SAR features in relation to the Urban Atlas  dataset used as 

reference 

Mr Wangiyana has chosen two cities with diverse topographical structures and various 

residential, commercial, and industrial buildings: Warsaw and London. He used X and C-band. 

ICEYE (VV in 9.65 GHz) and Sentinel-1 (VV and VH in 5.4 GHz) were the datasets  

The dates of the images were selected to be close to each other and cover the period without 

vegetation. ICEYE, The SpotLight Extended Area (SLEA) and Strip Map (SM) modes used  

the Interferometric Wide (IW) mode on Sentinel-1.  

Several image features Mr Wangiyana extracted from each SAR data to support the 

classification of land classes.  

In this research, texture features are extracted using GLCM (Gray-Level Co-occurrence 

Matrix (GLCM)) based on the log intensity SAR image. Texture images derived by GLCM 

are the result of second-order calculations, meaning they consider the relationship between 

reference and adjacent pixels.  

Mr Wangiyana applied speckle divergence from SAR log-intensity to delineate settlement 

areas that have the characteristics of bright intensity and high speckle divergence. 

It supports to distinguish from natural areas like agricultural fields, shrubland, or forest which 

often show relatively homogeneous texture. 

However, between high density and medium density classes, there is no visible distinction. 

 

Mr Wangiyana prepared the Workflow in the Methodology of the thesis – preparation of 

exact  applications which is as follows: 
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Detailed Datasets preparation: 

SAR data preprocessing with needed corrections. 

Intensity SAR image calculation. 

Training samples preparation according to urban classes’ definition. 

Main data processing and analysis:  

Speckle divergence and texture performance of SAR data;  

SAR image classification using supervised and unsupervised approaches;  

Evaluation of the accuracy and comparison of the results. 

Performed results:  two algorithms were compared: unsupervised clustering using K-means 

and supervised segmentation. 

Tiling was performed on the large SAR raster with a tile size of 512 by 512 pixels 

The model was trained 

Application of Alghoritms  

Unsupervised Classification; Supervised Semantic Segmentation 

Estimates of the classification performance of the algorithms 

Mr Wangiyana discussed the Classification results when two algorithms were compared: 

unsupervised using K-means and supervised 

segmentation using Unet as the neural network architecture  

For Vegetation, the Results in C-band are better because of the dual polarization and 

smoother texture compared to X-band  

Mr Wangiyana has concluded and described analysis on different details and polarimetric 

features from the C and X-band SAR data and stated that Neural networks consider not only 

spectral and textural features, but also geometric and multiscale neighboring information,  

Large objects were delineated better in C-band, while X-band radar is more sensitive to 

small surface roughness. 

Mr Wangiyana presented the comparision of the the single polarization X-band and dual 

polarization C-band SAR for LULC classification in urban areas and proved that X-band with 

higher detail is more suitable for urban analysis despite more SAR features being present in 

the dual polarization C-band. 

The use of Urban Atlas as a reference source is rather limited  

The suggestions to incorporat with data augmentation methods could improve its potential for 

training algorithms for LULC classification using a single polarization SAR image.  
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In Chapter 8 Mr Wangiyana concluded the results and performed possibility of future work   

The aim of the research has been dedicated to verify the use deep learning algorithms to 

develop a monitoring system for disaster mitigation. The significant changes in the urban 

landscape can be detected using SAR satellite imagery. The improved spatial resolution can 

provide input data for the classification and localization of infrastructures. SAR data provide 

continuous monitoring and could give data  at poor weather conditions that follow a 

disastrous event. 

To overcome the problem of limited training data leading to overfitting in supervised 

learning, Mr Wangiyana investigated the effects of different data enhancement methods on 

SAR. Pixel-based transformations were not as effective on SAR as on natural color images.  

 

Geometric transformations were shown to be effective in delaying overfitting. 

The multitemporal Sentinel-1 images were used to train an autoencoder in an unsupervised 

manner. The ability to detect general events was demonstrated by the autoencoder, which was 

trained only on SAR images of flooding events, and was able to detect changes in SAR images 

of wildfires and landslides. 

 

The neural network takes into account not only spectral and textural features, but also geometric 

and multi-scale neighbourhood information. Mr Wangiyana has demonstrated it in the LULC 

classification task, where the importance of different SAR features as input to a classifier was 

analysed. 

Mr Wangiyana stated that despite relying on a single polarisation VHR SAR, the high level of 

detail provides more features for the identification of man-made structures. The solution was 

tested in two urban areas with different topographical structures,  

 

In general, the DEEP  LEARNING  algorithms proposed by Mr Wangiyana demonstrate the 

feasibility of automated analysis using SAR images. The different urban landscapes and sensor 

configurations validate the generalization capability of the algorithm. 

Evaluation of the Doctoral Dissertation 

Scientific Value of the Dissertation and Assessment of the Purposefulness of the 

Conducted Research 

The topic undertaken by Mr Wangiyana is extremely important and highly relevant, especially 

in the context of recurring changes in infrastructure caused by threats. 
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A correctly formulated research hypothesis and well-defined research problems allowed Mr 

Wangiyana  to properly establish three main research objectives.  

In the first part of the thesis Mr Wangiyana described the SAR data,  and Deep Learning and 

on this bases he build his own research.  

The extensive literature to which Mr Wangiyana refers is undoubtedly a significant contribution 

to this work (201 positions), highlighting the researcher's commitment to citing published 

sources and demonstrating a high level of research excellence 

The study focuses on a significant issue related to Deep Learning methods for automated 

Urban monitoring.  This approach aims to explore the feasibility of deep learning algorithms 

improve the accuracy and efficiency of classification methods by selecting the most relevant 

features of C and X band.  

From a scientific perspective, the thesis demonstrates a high level of research, depth of 

analysis, and an innovative approach to solving the given problem. The study provides a well-

structured and insightful examination of the subject, contributing valuable findings to the 

field. 

The analysis of results, derived from extensive research, is both logical and well-documented. 

The study presents the outcomes and  strong conclusions. 

 

The findings reinforce existing literature while offering novel perspectives on applications of 

Deep Learning Methods for urban monitoring. In conclusion, this thesis contributes to the 

growing needs in examining disasters using radar data offering meaningful insights in 

theoretical and practical advancements. The research done by Mr  Wangiyana open avenues for 

future research which is so important to be continued.   

 

In conclusion, I state that the doctoral dissertation confirms a broad general practical and 

theoretical knowledge in the field of Deep Learning Methods for Automated Urban Monitoring 

System Using Synthetic Aperture Radar and demonstrates the ability to conduct independent 

scientific research. Furthermore, it constitutes an original solution to a scientific problem by Mr 

I Made Sandhi Wangiyana. 

 

Reviewer’s concerns 

In the thesis there are too much obvious descriptions of SAR, its history, acquisitions etc and it 

looks that the proportions in the thesis are disturbed.   
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Can the developed algorithm be applied to other areas? If so , it is a pity that Mr  Wangiyana 

has not conducted and presented the validation with the names of the places,  

I would like Mr Wangiyana to present the circumstances when soil moisture is high and how 

the SAR data will be effected . Also how the whole disturbance will occur applying ALOS 

data with long wave L. 

Could you think of other reference data than Urban Atlas especially not for urban data and if 

for urban then other? 

You wrote that there are the limitations of these SAR features in relation to the Urban Atlas  

dataset used as reference, what limitations? 

 

Konkluzja  

Po analizie wszystkich wymienionych w przedstawionej recenzji uwag wnioskuję o 

wyróżnienie przedłożonej mi do oceny rozprawy oraz stwierdzam, że  rozprawa spełnia 

warunki określone w Ustawie z dnia 14 marca 2003 r. o stopniach naukowych i tytule 

naukowym oraz o stopniach i tytule w zakresie sztuki zamieszczonej w Dzienniku Ustaw nr 65 

poz. 595 Art. 13.1 i Rozporządzeniu Ministra Edukacji Narodowej i Sportu z dnia 15 stycznia 

2004 r. w sprawie szczegółowego trybu przeprowadzania czynności w przewodach doktorskim 

i habilitacyjnym oraz w postępowaniu o nadanie tytułu profesora zamieszczonego w Dzienniku 

Ustaw Nr 15 poz. 128. Wnioskuję, zatem o dopuszczenie mgr I Made Sandhi Wangiyana  do 

publicznej obrony tej pracy. 
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Streszczenie 

Obszary miejskie pomimo zajmowania niewielkiej części powierzchni Ziemi stanowią 

centrum ludzkich osad i działalności gospodarczej i mają kluczowe znaczenie dla 

monitorowania zmian. Zaczynając od szybkiej oceny wpływu klęsk żywiołowych, aż po 

uchwycenie dynamiki rozwoju miast, dane teledetekcyjne są potrzebne do analizy pokrycia 

dużych obszarów. Radar z syntetyczną aperturą (ang. Synthetic Aperture Radar, SAR) jest 

jednym z instrumentów teledetekcyjnych, które mogą zapewnić globalne i ciągłe obserwacje 

Ziemi. Jego zdolność do przenikania przez chmury i niezależność od światła słonecznego jest 

zaletą w porównaniu z obrazami optycznymi. Jednak jego unikalne właściwości są złożone 

i trudne do przeanalizowania przez osoby niebędące ekspertami. Fakt ten prowadzi do 

wykorzystania głębokiego uczenia i sieci neuronowych, które w ciągu ostatniej dekady 

stworzyły zmianę paradygmatu opracowywania algorytmów opartych na danych w sposób 

kompleksowy. 

Proponowany system monitorowania zmian byłby rozwiązaniem dwuetapowym: 

wykrywanie zdarzeń na skalę miejską przy globalnym monitorowaniu środowiska, a następnie 

analiza cech poszczególnych budynków na obrazach o wyższej rozdzielczości. 

Niniejsza rozprawa przedstawia badania nad wykonalnością i użytecznością algorytmów 

głębokiego uczenia do zautomatyzowanej analizy obszarów miejskich z wykorzystaniem 

obrazów SAR. W pierwszym etapie zaproponowano nienadzorowaną metodę uczenia się przy 

użyciu lekkiego autoenkodera w celu uzyskania cech wysokiego poziomu do wykrywania 

dużych zmian w wieloczasowych obrazach SAR. W drugim etapie zaproponowano dwie 

metody do detekcji zabudowy: ekstrakcję obrysów budynków i klasyfikację pokrycia terenu. 

Niniejsza praca koncentruje się na maksymalizacji wykorzystania danych o intensywności na 

zobrazowaniach SAR, które są zarejestrowanymi wartościami rozproszenia mikrofali 

dostępnymi w teledetekcyjnych systemach SAR. Proponowane algorytmy zostały 

wytrenowane przy użyciu wystarczającej wielkości zbioru danych uczących w różnych 

obszarach miejskich. Wyniki wykazały istotną wydajność generalizacji, która jest niezbędna 

dla systemu monitorowania zmian o globalnym zasięgu. 

 

Słowa kluczowe: Radar z syntetyczną aperturą, Uczenie Głębokie, Detekcja zmian, 
Segmentacja, Analiza urbanistyczna 
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Abstract 

Despite covering a small portion of the Earth's land surface, urban areas are critical to 

monitor since they are the center of human settlements and economic activities. From a quick 

assessment of natural disasters’ impact to capturing the dynamics of urban growth, remote 

sensing data is needed for the analysis of large area coverage. Synthetic Aperture Radar (SAR) 

is one of the remote sensing instruments that can provide global and continuous observations 

of the Earth. Its ability to penetrate clouds and not depend on sunlight is an advantage over 

optical sensors. However, its unique properties are difficult for non-experts to analyze. This fact 

leads to the exploitation of deep learning and neural networks, which, for the past decade, have 

created the paradigm shift of developing data-driven algorithms in an end-to-end manner. 

The ideal monitoring system would be a two-stage solution: detection of city-wide events 

with global coverage monitoring, and then analysis of building-unit features in higher-

resolution images. 

This thesis explores the feasibility of deep learning algorithms for automated urban analysis 

using SAR. For the first stage, an unsupervised learning method using a lightweight 

autoencoder was proposed to output high-level features for detecting large-event changes in 

multitemporal SAR images. For the second stage, two SAR building-unit analyses were 

proposed: extraction of building footprints and land classification. This work focuses on 

maximizing the usage of SAR intensity data, which is the projected radar echoes available in 

all SAR systems. Proposed algorithms were trained using sufficient dataset size in diverse urban 

scenes. Results have demonstrated reasonable generalization performance, which is necessary 

for a monitoring system with global coverage. 

 

Keywords: Synthetic Aperture Radar, Deep Learning, Change Detection, Segmentation, Urban 
Analysis  
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1 Introduction 

Synthetic Aperture Radar (SAR) has been widely used in Earth observation for many 

decades. It provides images regardless of weather and independent of sunlight for various 

remote sensing applications, from climate change research, environmental monitoring, 

planetary exploration, and disaster analysis. This dissertation uses SAR as the main source of 

data for automated analysis that were applied to disaster response and urban monitoring. 

1.1 SAR for Disaster Response 
On February 6, 2023, a catastrophic magnitude 7.8 earthquake hit the borders of southeast 

Turkey and northwest Syria, which was followed by a magnitude 7.5 earthquake nine hours 

later [1]. In Turkey alone, at least 270 thousand buildings were collapsed, giving an estimate of 

210 million tons of rubble [2]. The event resulted in the death of over 50 thousand people which 

most were casualties from the direct hit of collapsed residential apartments or buried under the 

rubble. 

The two events exceeded expectations not only in magnitude but also in terms of the damage 

they caused. According to studies [3], the wide rupture length was caused by the earthquake 

doublet rupturing multiple segments of the East Anatolian Fault Zone in one go and causing a 

larger slip. The main quake rupture extended over 300 km while the aftershock resulted in a 

shorter rupture of about 100 km but larger land displacements of up to 7-8 m. Moreover, the 

two large earthquakes occurred in neighboring fault zones, resulting in widespread damage in 

an area of about 350,000 km2 [4]. Turkey’s president declared a three-month state of emergency 

in 10 provinces. 

 

Figure 1.1 The town of Islahiye in Gaziantep province. Optical images from Maxar [5] a) 
before the earthquake (December 27, 2022), b) after the earthquake (February 7, 2023), and c) 

post-earthquake SAR image from Capella Space (February 9, 2023) [6]. 
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Early emergency response focuses on removing rubble and rescuing buried civilians. It is 

necessary to locate the worst hit areas, detect collapsed buildings, and determine rescue routes. 

However, the challenge is in analyzing such a large area in the shortest amount of time possible, 

as less time meant more rescued lives. Additionally, extreme cold weather that hit the regions 

hampered rescue operations. Damaged roads and rubble also made it difficult to find survivors 

and get crucial aid into affected areas. Several airports have also been closed after being 

damaged by the earthquakes. That is why remote sensing plays a critical role in disaster 

management. The earliest aerial or satellite images can be used to coordinate humanitarian aid. 

Several commercial space companies such as Maxar [5], Capella Space [6], Umbra [7], and 

ICEYE [8] have released Very High Resolution (VHR) satellite data at 50 cm/pixel to aid in 

emergency response. An example of this humanitarian aid data is in Figure 1.1. These remote 

sensing data were used by disaster relief groups such as Copernicus Emergency Management 

Service (CEMS) and Humanitarian OpenStreetMap, which actively assessed the situation, 

manually identifying damaged buildings from optical images. However, optical sensors depend 

on good weather conditions for optimal analysis. Such situations are not usual post-disaster 

events, such as Cyclone Freddy that struck Mozambique and Madagascar in the same month 

and year [9] which was closely monitored using SAR [10]. 

SAR sensors have strong advantages over optical sensors for monitoring purposes and for 

rapid analysis. Using active instruments that can penetrate through clouds, data can be obtained 

independently from daylight and weather. This means the data can be used almost immediately 

after an airborne or spaceborne instrument passes. 

1.2 SAR for Urban Analysis 
As stated by Fedra [11], urban management addresses the problems that are spatially 

distributed as well as dynamically changing. One of the primary use cases of remote sensing in 

urban monitoring is the creation and updating of urban maps. High-resolution airborne or 

spaceborne images can capture the current layout of buildings and roads, providing essential 

information required by urban planners, engineers, and policymakers to make informed 

decisions. These maps are crucial for understanding the spatial distribution of infrastructure and 

can help identify areas where new developments are feasible. SAR’s ability to penetrate 

canopies enables the detection of hidden structures, providing a more comprehensive view of 

the urban environment. 

Urban growth is another important use case. As cities expand, it is crucial to monitor how 

new developments affect existing infrastructure and the environment from the effects of 
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increased greenhouse gas emissions. Built-up structures induce strong backscatter in radar 

images and thus can be distinguished from natural objects [12]. This information helps urban 

planners to manage growth sustainably, ensuring that new developments are integrated 

smoothly into the existing urban fabric.  

1.3 SAR and Deep Learning for Monitoring Systems 
Historically, radar images have been developed with the main usage in military applications. 

Interpretation requires experts with knowledge of statistics, information theory, and signal 

processing. Currently, SAR has gained more usage in civil applications. Sentinel-1 constellation 

by the European Space Agency (ESA) has played a significant role in most SAR research 

because of the global coverage and free-of-charge usage [13]. Over the past years, better SAR 

technology has emerged. Commercial space companies providing SAR data have moved 

towards microsatellite constellations, increasing the flexibility for high temporal coverage, and 

different imaging modes to cover wider areas or capture finer details. 

This abundance of data along with the popularity of artificial intelligence gave birth to a 

plethora of data-driven algorithms using Deep Learning (DL) and neural networks. The 

unobstructed continuous observation capabilities provided by SAR sensors and the automated 

end-to-end analysis from deep learning are a promising combination for a monitoring system.  

Despite the promise, there are limitations regarding this solution. New DL models and 

architectures are typically benchmarked on natural RGB (Red, Green, Blue) images. This brings 

the challenge of bridging the domain gap between natural everyday images to overhead remote 

sensing images, and finally to side-looking SAR images. DL scales with more quality data. 

Despite the rise in space companies or startups, it is still difficult to obtain large amounts of 

relevant data for training, due to: 

 The trade-off between spatial resolution and swath width (coverage area). This means there 

is no single approach to collecting SAR data for the multitude of applications it is used for. 

In target recognition, the highest resolution possible is required for a higher chance of 

identifying key features of the target. In flood detection, ice monitoring, and earthquake 

deformation analysis, a wider swath is favorable to delineate the large area impact. SAR 

providers usually have different imaging modes to manipulate this trade-off. 

 The use of microsatellites is meant to give customers flexible control of imaging mode, such 

as the area of interest, frequency of observation, coverage, etc. However, this means that 

historical images of areas hit by disasters are rarely available since it's difficult to anticipate 
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and pre-emptively plan a monitoring mission to specific areas. Therefore, only post-event 

images are usually available. 

 Furthermore, unlike in optical images where images from different sensors can be 

“harmonized” to obtain consistent radiometric values [14], the ground response from SAR 

sensors is very sensitive to the imaging mode and the instrument, such as the look angle, 

direction, and frequency band. This adds the challenge of learning hidden patterns from the 

data distribution when data from different providers are combined. 

With these limitations in mind, a feasible monitoring system will require a two-stage 

detection. The first stage is for monitoring and detecting large-scale events in global coverage. 

The second stage is performing building-unit analysis from highly detailed images. This 

dissertation aims to verify the feasibility of this monitoring system with the purpose of disaster 

mitigation and urban analysis. 

1.4 Research Goals 
The theses of this dissertation are as follows: 

 It is possible to improve the classification of building footprints using data 

augmentation for a limited set of SAR images. 

 It is possible to detect large event changes from multitemporal SAR images using an 

autoencoder that was trained in an unsupervised way. 

 It is possible to do urban Land Use Land Cover (LULC) classification on a single 

polarization SAR image. 

To solve these theses, the goal of deep learning, which is generalization, needs to be 

considered. Generalization is the ability to predict sufficiently well in a broad range of problems 

in various study areas. Considering the limitations mentioned in the previous section, this 

research focuses on algorithms applied to the SAR intensity image which is the most commonly 

available SAR data. Therefore, the phase information used in interferometric analysis, or 

polarimetric decompositions used with polarimetric data are not considered. Research was 

conducted with the following aims: 

 Evaluation and benchmarking of the performance of state-of-the-art neural network 

architectures used in Computer Vision research on SAR data. 

 Development and validation of pre-processing methods for fitting large remote sensing 

data to reasonably sized neural networks. 
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 Experimentation of various data augmentation strategies specifically for radar images. 

 Experimentation of algorithms on various urban landscapes and acquisition modes. 

1.5 Contributions 
Addressing the study directions mentioned above, several contributions were made in 

progressing the field of DL for SAR which were published in a journal and various conference 

proceedings: 

 Experimental verification of data augmentation methods and strategy specific to SAR 

images. It was shown that geometrical transformations were more effective than pixel 

transformation, except for quarter rotation and vertical flip, which lowered performance due 

to extreme displacement of the shadow and layover patterns from large infrastructures [15], 

[16]. 

 Experimental verification on the use of explainable methods for analyzing neural network’s 

decision making in SAR object classification [17]. 

 Development of a general large-event detector using a lightweight autoencoder trained on 

unlabeled multitemporal SAR images [18], [19]. 

 Review of the state-of-the-art research of DL-based building-unit damage assessment from 

SAR images. 

 Open-sourced the codes used in all experimental chapters in this dissertation, from the 

collection of remote sensing data, preprocessing, training pipeline, to benchmark results. 

The codes can be found at https://github.com/sandhi-artha/dissertation. 

1.6 Organization 
The dissertation is organized as follows: 

Chapter 2 

The main data source of this work is SAR images in urban scenes. Unlike optical images, 

SAR is not intuitive. It has unique properties present in urban landscapes such as layover, 

foreshortening, and shadows. This chapter summarizes basic SAR theory and image 

interpretation that will be leveraged in analysis for subsequent chapters.  

Chapter 3 

The main method used in this work is Deep Learning (DL). This chapter explains the main 

building blocks of DL, which is the Artificial Neural Network (ANN), and summarizes how 
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learning is performed. The Convolutional Neural Network (CNN) and the autoencoder as the 

primary architecture used in this study are also discussed. 

Chapter 4 

Building Damage Assessment (BDA) is important to plan optimal emergency responses 

after a disaster. This chapter aims to summarize state-of-the-art research of deep learning-based 

methods for building-unit damage assessment using SAR. Approaches for quantifying building 

damage in different SAR features were reviewed. The challenges of building-unit analysis and 

ways to advance open research were discussed. The review concludes with key findings and 

opportunities for future research. 

Chapter 5 

Building information is a valuable resource in disaster management. The task of building 

footprint extraction using SAR images still falls behind the optical images mainly from the 

limited amount of data and the unique geometric and radiometric features of building objects. 

In this chapter, data augmentation was proposed as the solution to the limited SAR datasets and 

to improve robustness from SAR specific features. Experiments were conducted on various 

transformation methods and their impact on the segmentation performance. The study provides 

insights on selecting augmentation methods that improve detection from radar imagery. 

Chapter 6 

Urban analysis from remote sensing images generally requires very high resolution (VHR) 

data to identify various sized man-made objects such as buildings and roads. In SAR, high 

spatial resolution comes at the cost of smaller coverage, not to mention the massive storage 

required. In this chapter, the autoencoder was proposed to detect large event changes from 

Sentinel-1 multitemporal SAR data. It was trained in an unsupervised manner to learn 

representations from crops of SAR images. The distance between representations of pre and 

post-images in the latent space was used to identify areas that have encountered significant 

change. 

Chapter 7 

The potential of SAR data to provide up-to-date information can be used in urban density 

analysis. Built-up structures can be distinguished through scattering mechanisms which can be 

visible in Polarimetric SAR data. However, Polarimetric modes are not common in satellite 

operations. This chapter compares the use of single polarization X-band and dual polarization 

C-band SAR data for LULC in urban areas. The Urban Atlas dataset was used as a reference. 
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The performance of unsupervised clustering and supervised deep segmentation methods were 

analyzed along with a discussion of their trade-offs. 

Chapter 8 

Finally, the main outcomes of this dissertation are summarized in this chapter. The chapter 

ends with outlines for future work. 
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2 Synthetic Aperture Radar 

The word radar is an abbreviation for radio detection and ranging, suggesting its main 

purpose is to measure distance. A radar is an instrument that emits electromagnetic waves and 

receives the returned signals (echoes) from any objects (targets) that bounce off along the 

propagation path. By measuring the time delay between transmitting and receiving the reflected 

signal the distance between the sensor and the object can be calculated. Modern radars are a 

more sophisticated transducer/computer system that is also used to track, identify, image, and 

classify targets [20]. 

When using radar to develop an image with two dimensions, some geometric constraints 

must be enforced to prevent ambiguities in distinguishing objects. Mainly, if the radar 

instrument is pointed at the nadir (the direction pointing below the airborne/spaceborne 

vehicle), points located near the vertical will have the same range from the radar. This also 

includes points at the same range, but opposite direction. Therefore, for imaging radars, the 

instrument must be side-looking so that the ground distance of a point can be sorted as a function 

of its distance from the radar. 

The range ܴ can be calculated by measuring the time ݐ it takes for the transmitted pulse to 

travel to the target and return, considering that electromagnetic wave propagates at the speed of 

light ܿ, then 

ܴ =
ݐܿ
2 . (2. 1) 

In this chapter, a short introduction is laid out on how an image is formed in SAR, types of 

acquisition modes, and how to interpret a SAR image, which will be important in subsequent 

chapters. 

2.1 History of SAR 
The development of SAR systems was motivated by the need for an all-weather aerial 

remote surveillance device. Radar becomes the sensible choice, due to its ability to penetrate 

fogs and clouds, without the need of visible light. However, to obtain sufficient resolution, the 

antenna would need to be the size of a football field, making it impossible to carry on a 

reconnaissance aircraft. In the early 1950s, Carl Wiley discovered the use of Doppler frequency 

analysis could improve the image resolution of a side-looking radar. It led to the development 

of the SAR technique, which mainly focuses on the signal processing in the azimuth dimension 
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to obtain higher resolution by synthesizing an aperture that is longer than the actual physical 

antenna. 

The National Oceanic and Atmospheric Administration (NOAA) and engineers from the Jet 

Propulsion Lab (JPL) explored the use of SAR for oceanic observations. SAR’s wavelength is 

sensitive to small surface changes which makes it suitable for monitoring surface wave patterns 

and currents. This led to the launch of Seasat in 1978, which marked the first use of SAR in 

civilian applications. Prior to Seasat, earth observations were performed via Landsat optical 

cameras. Seasat stopped operating later in the same year due to a short circuit in its power 

system. In 1991, the launch of ERS-1 by the European Space Agency was the first in a series 

of orbital SAR satellites aimed at providing long-term earth observation data. This was later 

followed by JERS-1, ERS-2, Radarsat and Envisat [21]. 

2.1.1 Radar Equation 
The interaction between the incident wave and a target is expressed by the radar equation. 

The power received by the radar antenna ோܲ can be expressed as 

ோܲ = ௌܲ ∙ ଶܩ ∙ ଶߣ

ଷ(ߨ4) ∙ ܴସ ∙ ,ߪ (2. 2) 

where ோܲ depends on the power of the sender ௌܲ, the antenna gain ܩ, the wavelength ߣ, the 

distance between the antenna and the target ܴ, and the radar cross section (RCS) ߪ 

During the interaction of the transmitted electromagnetic wave with a potential target, part 

of the energy carried by the incident wave is absorbed by the target while the rest is reradiated 

as a new electromagnetic wave and modulated with the properties of the target [22]. To 

characterize the target property in terms of power exchange, the concept of RCS ߪ was 

introduced in [23] for point targets, described as the ratio of the energy scattered back from the 

target ܧ௦ሬሬሬሬ⃗  and the energy intercepted by the target ܧపሬሬሬ⃗  and expressed as an area in m2 

ߪ = ߨ4 ∙
หܧ௦ሬሬሬሬ⃗ ห

ଶ

หܧపሬሬሬ⃗ ห
ଶ . (2. 3) 

For extended or distributed targets, which occupies space larger than the radar footprint, the 

concept of backscattering coefficient ߪ is defined as the RCS per unit area ܣ which makes it 

have no dimension 

ߪ =
ߪ
ܣ . (2. 4) 
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2.1.2 Side-Looking Airborne Radar 
The early technology for imaging radars is the Side-Looking Airborne Radar (SLAR) 

mounted on a plane at height ܪ. To form a 2D image, the echoes received from the ground are 

sorted by their arrival time in both range and azimuth direction. The radar resolution describes 

the ability of a radar to distinguish nearby targets. In the range dimension, objects at different 

ranges can be distinguished if they are separated farther than half the transmitted pulse length 

ܶ. Therefore, the range resolution ߩோ  of SLAR is 

ோߩ = ܿ ܶ/2. (2. 5) 

However, this is the slanted range dimension, which is perpendicular to the pulse direction. 

To measure objects on the ground surface, the ground range resolution ீߩ  is  

ீߩ = /ோߩ sinߠ . (2. 6) 

It means ீߩ  is not constant as it is a function of the look angle or the incidence angle ߠ 

which varies from the near range (start of the swath closest to the radar) to the far range, as 

shown in Figure 2.1. 

 

Figure 2.1 Geometry of a SLAR system. 

The resolution in the azimuth direction ߩ is defined by the width of the antenna footprint 

in the azimuth direction, which is 

ߩ = ,ܮ/ܴߣ (2. 7) 

where ܴ is the slant distance between the radar and the footprint on the ground, which again 

varies over the swath width. This consequently imposes limitations on the SLAR system. First, 
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  being not constant across different range values, and second, the dependency on distanceߩ

means high-altitude vehicles are impractical due to the poorer resolution. Alternatively, the 

antenna length ܮ could be increased but would still require an impractical size to compensate 

for the large distance. The synthetic aperture radar would later solve this issue. 

2.2 SAR Image Generation 
A SAR system carried by an airplane or satellite is shown in Figure 2.2. The radar antenna 

moves with the vehicle along a flight path (azimuth direction) and is oriented parallel to the 

flight direction and looking sideways to the ground (range direction). The antenna, typically a 

phased array, has a dimension of length ܮ and width ܹ and moves with the vehicle along its 

flight path above the earth with height ܪ at velocity ܸ. On the ground, the surface area where 

the radar pulse is reflected is called the footprint. The whole surface area covered by 

consecutive radar pulses is called the swath. The radar transmits short pulses with duration ܶ, 

which is repeated with pulse repetition interval (PRI) similar to the period of the signal ܶ =

1/ ݂, where ݂  is the pulse repetition frequency.  

 

Figure 2.2 SAR imaging geometry. 
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Once the transmitted pulse is emitted by the radar, a sufficient length of time must elapse to 

allow any echo signals to return and be detected before the next pulse may be transmitted. 

Therefore, the rate at which the pulses may be transmitted is determined by the longest range 

at which targets are expected. Otherwise, the echo might be measured after the next pulse was 

emitted, resulting in a range ambiguity [23]. 

The beamwidth in azimuth axes is ߠு = ߠ while the beamwidth in the range axes is ,ܮ/ߣ =

 The pulse is directed at some angle off the nadir (the direction pointing below the vehicle) .ܹ/ߣ

called the look angle or the incident angle ߠ. The distance from the radar to the center of the 

radar footprint is measured by ܴ. 

The radar pulses illuminate the ground target numerous times, with the time duration of 

illumination ∆ܶ depends on the beamwidth of the radar antenna and the speed of the flying 

vehicle, described as 

∆ܶ =
ܴߠு
ܸ . (2. 8) 

The radar image is formed by processing the 2D raw data collected by the target echo 

returned from every radar pulse, transmitted at the rate of ݂ . The 2D radar image data are 

represented in complex numbers and normally can be processed separately by processing range 

data first, followed by azimuth data. 

2.2.1 Range Dimension 
Like in SLAR systems, objects or scatterers at different ranges are distinguished based on 

the time of arrival of their echo. The reception period is limited, thus, determining the minimum 

and maximum range of the swath width ௦ܹ . As with (2.5), a narrower pulse means a better 

resolving capability between two-point targets. However, over great distances, the energy 

carried by narrow pulses is reduced, lowering the sensitivity of the radar for weaker targets. 

The solution is to transmit a pulse with the frequency swept linearly with time, referred to as a 

chirp. 

The advantage of transmitting the chirp waveform is that, on reception, it can be compared 

against a replica of itself using the operation of correlation, the result of which is a compressed 

pulse with its center located very precisely in time. Figure 2.3 shows the correlation outcome 

is a narrow function, which will be used to achieve the range resolution. Using the compressed 

pulse which has the half power width of 1/ܤ, the slant range resolution will then be 
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ோߩ =
ܿ

ܤ2 . (2. 9) 

 

Figure 2.3 Range compression. 

2.2.2 Azimuth Dimension 
If improvement of ߩோ  is achieved by using pulse compression technique, the improvement 

of ߩ takes advantage of the synthetic aperture concept. Figure 2.4 shows the SAR imaging 

system with ܯ ground targets located along the azimuth dimension or along-track direction 

represented by the ݑ-axis. Each target has an RCS ߪ, where ݉ ∈ {0,1,2, … ܯ, − 1}. The radar 

illuminates the target area with the beamwidth ߠு. Let ݂(ݑ) be an ideal target function in the 

azimuth domain, which identifies a group of ܯ targets located along ݑ-axis 

݂(ݑ) =  ݑ)ߜߪ − (ݑ
ெିଵ

ୀ

. (2. 10) 

The azimuth processing is based on the phase history of returned signals from the targets, 

which are located along the ݑ-axis and illuminated under the radar beam. Consider a single 

target ߪ, which is under the center beam of the radar (highlighted in green) and therefore has 

the shortest range ܴ from the radar. The ܮௌ =  ு is then the synthetic aperture length whichߠܴ

is equivalent to the length of the along-track footprint [24]. 
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Figure 2.4 A simplified view of the radar pulses sliced in the azimuth dimension. 

Since the SAR platform is continuously moving, the echoes returning from objects in the 

front part of the beam are Doppler shifted to higher frequencies, while echoes from the rear part 

of the beam are shifted to lower frequencies. This enables the antenna footprint to be divided 

into bins of equal Doppler shifts (which consequently of equal range). The frequency shift of a 

moving target is given by 

݂ = ܸ

ߣ , (2. 11) 

with ܸ being the relative motion between the source and detector. The frequency history of a 

signal from a target that has moved through the beam has an approximately linear shift in 

frequency, where it appears to sweep through a range of frequencies (bandwidth) from high to 

low. This is known as azimuth compression. The system must therefore be able to transmit 

consistent (coherent) pulses and accumulate the echo information over successive pulses to 

allow the synthesis of a virtual antenna that is much longer than the physical antenna. 

In this azimuth compression, the ability of the instrument to differentiate signals in time is 

the inverse of the Doppler bandwidth ܤ. To determine the azimuth resolution, the speed of the 

platform must be considered (rather than the speed of light as used in the range resolution) 

measured in the coordinate system of the target 

ߩ = .ܤ/ܸ (2. 12) 

The full Doppler bandwidth is given by [24] 

ܤ =
4 ܸ sin(ߠு/2)

ߣ . (2. 13) 
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When dealing with units of radians, if ߠ is small, the sine of the angle is approximately 

equal to the angle itself. With that and given ߠு =  plugging (2.13) to (2.12) ,ܮ/ߣ

ߩ =
ܮ2ߣܸ
ߣܸ 4 =

ܮ
2 . (2. 14) 

This seems counterintuitive to the expression of resolution from an aperture of length ܮ, but 

in SAR, the large spread of the Doppler frequencies is utilized rather than the angular 

beamwidth ߠு. Smaller length antenna will produce a larger beamwidth which in turn increases 

the Doppler bandwidth given by (2.13). 

2.3 SAR Acquisition Modes 
2.3.1 Data Acquisition 

The 2D radar image is formed by digitizing the received reflected signal at sampling rate ௦݂ . 

The radar data is arranged in a matrix of complex numbers where each row of data represents 

one reflected radar pulse, while the column contains information on the same target from 

successive reflected radar pulses at a constant time interval. Each column of data serves as the 

along-track dimension of the radar data and is equivalently sampled by the pulse repetition 

frequency ݂  [24]. 

Figure 2.5 shows the generation of in-phase and quadrature-phase (or I-Q) components. 

These two signals go through a low pass filter and are digitized to render a complex number 

pair which is projected as one row of the 2D radar image. The reference signal is dependent on 

the transmitted signal. 

 

Figure 2.5 Processing of the received signal into In-phase (I) and Quadrature-phase (Q) data 
[24]. 
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Two points separated by a few meters in the radar range dimension can be distinguished as 

long as the pulse duration ܶ is sufficiently short and the sampling rate ௦݂  of the analog digital 

converter is sufficiently high. In the range direction, ௦݂  must satisfy the Nyquist requirement of 

௦݂ ≥  Along the azimuth direction, since the radar moves with the vehicle at speed ܸ and .ܤ

transmits a pulse at the time interval ܴܲܫ = 1/ ݂, then ௦݂  is equal to ݂ . 

2.3.2 Polarimetry 
Polarimetric states are the plane in which the electric field component of the electromagnetic 

wave oscillates. In radar remote sensing, horizontal (denoted by the subscript ܪ) and vertical 

(denoted by subscript ܸ) polarized signals are usually used. By switching between polarization 

states on transmit and receive, the scattering matrix ࡿ is obtained which transforms the incident 

(transmit, ݅) field vector to the reflected (receive, ݎ) field vector [25]. 

ܧு


ܧ
൨ = ܵுு ܵு

ܵு ܵ
൨

ᇩᇭᇭᇪᇭᇭᇫ
ࡿ

 ቈܧு


ܧ
 

Most SAR systems use a single antenna to transmit and receive echoes. This is referred to 

as monostatic sensor configuration, in which due to the reciprocity theorem, the two cross-

polarized matrix components are treated as equal ܵு = ܵு. The scattering matrix carries 

useful information because reflection at object surfaces may change the polarization 

orientation. A more comprehensive overview of Polarimetry SAR (PolSAR) can be found in 

[26]. 

2.3.3 Interferometry 
The measured SAR data consists of phase and amplitude within a resolution cell. It is 

therefore possible to compare the phase differences of two different images of the same region. 

If the combined SAR images were obtained from slightly different look angles, the relative 

locations of pixels in three dimensions can be measured, enabling the mapping of the surface 

topography. This is called a single-pass measurement. If the combined images are from the 

same position but at different times, the phase changes will indicate movement of surface or 

deformation between the period of acquisition. This is called a repeat-pass measurement. The 

produced image is called an interferogram. Phase is affected by interactions with the ground 

target, the satellite's position in orbit, and topography. These parameters need to be compensated 

and removed from the final interferogram to reveal the temporal change of the ground surface 

[27].  
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2.4 SAR Image Analysis 
The basic quantity measured by a single-polarization SAR at each pixel is a pair of signals 

in the in-phase and quadrature channels. However, several weightings must be applied in the 

SAR processing to convert the measured voltages to geophysical units that correspond to the 

complex reflectivity or backscattering coefficient of the scene. Therefore, the measurements 

made by SAR are fundamentally determined by electromagnetic scattering processes. This 

means the physical properties of the terrain cause changes in both the phase and amplitude of 

the wave. 

Seeing the SAR log intensity data in Figure 2.6 as an image, several patterns are 

recognizable, especially for people familiar with the area. The national stadium of Warsaw is 

visible on the left bottom as shown by bright lines that resemble the dome. Across to the right 

of the stadium is Park Skaryszewski. Straight lines intersecting in a roundabout at the center of 

the image are roads. L-shaped patterns on the top are characteristics of buildings. 

  

Figure 2.6 Log Intensity SAR image of the National Stadium in Warsaw, Poland, captured by 
ICEYE in 2023 (left) [8]. Optical images from Bing Maps Satellite Imagery (right) [28]. 

For each resolution cell in the image, the in-phase component resembles the real part 

ܣ cosΦ and the quadrature component is the imaginary part ܣ sinΦ, where ܣ is the amplitude 

and Φ is the phase. From the complex reflectivity image, other products can be formed to 

improve the interpretation of the scene, namely the intensity ܫ = ଶ and the log intensity logܣ  .ܫ

The use of the word intensity is synonymous with power or energy. The log intensity image is 

often referred to as the “dB” image since for calibrated data each pixel corresponds to a linearly 

scaled estimate of the backscattering coefficient ߪ in dB. This is done by taking the 10 logଵ 

of each pixel in the calibrated intensity image. The intensity image has a large dynamic range 

of values which reduces the perception of detail; therefore, the log intensity is often preferred 

for visual analysis. 
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The observed backscatter is a combination of the characteristics of the radar system 

(frequency, polarization, incidence angle) with the characteristics of the surfaces (roughness, 

topography, correlation length, dielectric constant). 

2.4.1 Surface Roughness 
In general, roughness is the height variation inside of a resolution cell. If there are high 

variations, then the surface is considered rough. In a SAR image, the roughness depends on 

how large the variation of height is compared to the emitted wavelength. An illustration is 

shown in Figure 2.7. Leaves are too small to be visible for L-band, therefore, with that long 

wavelength, forests in L-band appear to be smoother than in X-band. A smooth surface will 

appear darker in a SAR image. 

 

Figure 2.7 Sample images of the same area captured using L-band (top), and X-band 
(bottom). Illustration source from [29]. It’s visible that the top image has more contrast as 

shown by the darker forest area. This is due to the short X-band wavelength being reflected by 
the tree canopies. 

2.4.2 Speckle 
The grainy noise-like patterns shown in Figure 2.6 are characteristics of images produced 

by coherent imaging systems (also lasers and sonars) known as speckle. It is important to note 

that speckle itself is not a noise, but the actual measurements of electromagnetic scattering. 

Consider a distributed target where each resolution cell contains a number of discrete scatterers. 

Each scatterer illuminated by the beam produces a backscattered wave with a phase and 

amplitude change, and their summation will be recorded as the cell’s measurement. This is 

illustrated in Figure 2.8. 
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Figure 2.8 The speckle effect from radar illumination is the combination of elementary 
contributions within a resolution cell [30]. On the right shows the radiometric distribution of 

the resulting SAR image. 

2.4.3 Geometric Distortions 
Due to the oblique observation geometry inherent to all imaging radar systems, surface 

slopes, and similar terrain features lead to geometric distortions in data acquired by SAR 

systems. The most relevant of these distortions are foreshortening, layover, and shadow. Figure 

2.9 shows the city of Islahiye, Turkey. On the left is a hill spanning from the top to the bottom 

of the image. The Capella Space radar is looking to the left. Foreshortening appears on the slope 

of the hill facing the radar where the distance between the peak of the hill and the end of the 

slope will be shortened. Consequently, buildings at the end of the front facing slope also 

experienced geometric distortions. The amount of foreshortening depends on the incidence 

angle and the slope angle. In areas where the incidence angle is lower than the slope angle, the 

top of the structure will be imaged ahead of the base, and a layover will occur. This is commonly 

visualized in tall buildings, where the walls of the buildings that face the sensor will be projected 

to the ground in the direction of the radar. The area behind a large structure that is not penetrated 

by the radar causes shadows. Effects of foreshortening and layover in mountainous areas can 

be reduced by increasing the incidence angle, but doing so will also worsen the shadow effects. 
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Figure 2.9 Foreshortening, layover, and shadow effect of buildings in the mountainous area of 
the city Islahiye, Turkey. Captured by Capella Space in 2023 [6]. Note that on the right of the 

image are also visible many layover and shadow effects from buildings. 
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3 Deep Learning 

Deep Learning (DL) is a subset of Machine Learning (ML) which both are predicated on 

the idea of learning from examples. Artificial intelligence (AI) is a more general field that 

encompasses ML and DL. The field of AI can be described as the effort to automate intellectual 

tasks normally performed by humans, which also includes many more approaches that do not 

involve learning [31]. Their relation is shown in Figure 3.1. 

 

Figure 3.1 The relationship between AI, ML, and DL. 

In ML, instead of programming a computer with a massive list of rules to solve a problem, 

a model is given data with which it can evaluate examples, and a small set of instructions to 

modify the model when it makes a mistake. It can then be expected that over time, a well-suited 

model would be able to solve the problem with sufficient accuracy. However, ML is sometimes 

termed shallow learning due to the architecture mostly consisting of single-layered 

representation with features extracted manually from the data as input. In DL, the model learns 

meaningful representations from training examples to solve the given task in an end-to-end 

manner. Mitchell [32] provides the definition of learning as: 

“A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its performance at tasks in T, 
as measured by P, improves with experience E.” 

A short introduction of each aspect will be discussed in the following subsections. Key terms 

are bolded the first time they are introduced to distinguish them from their literal meanings. 

3.1 The Learning Algorithm 
3.1.1 The Task 

DL can tackle tasks which are too difficult to solve with fixed programs written and 

manually designed by humans. For example, when developing a robot that can walk, then 
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walking is the identified task. In the research field, DL tasks are usually described in terms of 

how the system should process an example. An example is a collection of features that have 

been quantitatively measured from some objects or events, e.g. features of an image are values 

of the pixels in the image. An example is usually represented as a vector ݔ ∈ ℝ where each 

entry ݔ of the vector is another feature. A collection of examples (sometimes called samples or 

data points) is called a dataset. 

Many DL tasks exist in the literature such as regression, classification, natural language 

processing, and generative modeling. Experiments in this study focus on the classification task. 

In classification tasks, the system is asked to specify which of the ݇ categories some input 

belongs to. To solve this, the learning algorithm is usually asked to produce a function ݂:ℝ →

{1, … ,݇}. Classification tasks depending on the label types can be categorized into: Binary 

(there are two classes, usually called the positive and negative class), Multi-class (there are 

more than two classes), and Multi-label (the class predictions are not exclusive, meaning each 

object can belong to more than one class simultaneously). 

3.1.2 The Performance Metric 
To evaluate the skill of a DL algorithm, a quantitative measure of its performance should 

be designed. The selection of this performance metric is usually specific to the task being 

carried out by the system. To prepare for real-world scenarios, the algorithm’s performance is 

usually measured on data it has not seen before. This data is called a test set. 

The choice of performance measure may seem straightforward and objective, but it is often 

difficult to choose a metric that corresponds well to the desired behavior of the system. For 

example, in classifying medical images of malignant and benign tumors, should the system’s 

sensitivity be increased to not miss any malignant samples (which could cost the loss of lives), 

or be reduced to not have many false predictions (which could relieve many patients from a 

costly mistreatment)? 

3.1.3 The Learning Experience 
Learning is the means of attaining the ability to perform a given task. The experience in 

this case is being exposed to an entire dataset. DL algorithms can be broadly categorized as 

supervised or unsupervised based on what kind of experience they are allowed to have during 

the learning process. 
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In supervised learning, the algorithm experiences a dataset containing features where each 

example of a random vector ݔ is associated with a label or target ݕ and the model tries to 

estimate (ݔ|ݕ). 

In unsupervised learning the model experiences several examples of a random vector ݔ, then 

attempts to pick up useful properties of the structure of this dataset, usually by learning the 

probability distribution that generated this dataset (ݔ).  

3.2 Artificial Neural Networks 
The foundational unit of the human brain is the neuron. At its core, the neuron is optimized 

to receive information from other neurons, process this information in a unique way, and send 

its result to other cells. Neural networks emerged from this drive for biologically inspired 

intelligent computing - and went on to become one of the most powerful and useful methods in 

the field of artificial intelligence. Despite this, deep learning research nowadays takes 

inspiration from mathematics, statistics, and computer science, rather than neuroscience. Deep 

Learning is closely associated with Artificial Neural Network (ANN) that consists of multiple 

layers stacked one after the other. Learning is performed automatically by composing lower-

level features and then building up to more complex ones. 

3.2.1 The Neuron 
An artificial neuron takes in some number of inputs ݔଵ, ,ଶݔ …  , each multiplied by aݔ.

specific weight, ݓଵ,ݓଶ, …  ݖ . These weighted inputs will be summed and produce the logitݓ,

of the neuron. 

ݖ =  ݔݓ


ୀ
. (3. 1) 

The logit will then be passed through an activation function ݂  , to produce the output of that 

neuron, which can then be transmitted to other neurons. By reformulating the inputs to a vector 

 :is ݕ the output of the neuron ,࢝ and the weights to a vector ,࢞

ݕ = ݂(࢞ ∙ ࢝ + ܾ), (3. 2) 

where ܾ is the bias term. This linear neuron can be used to solve simple linear functions. In the 

real-world, data is generally not linearly separable. Therefore, to learn more complex 

relationships (as shown in Figure 3.2), nonlinearity needs to be introduced to the neurons. These 

non-linear transformations are called activation functions. 
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Figure 3.2 As the data takes more complex forms, more complex models are needed to 
describe them [33]. 

An example is the sigmoid function shown in Figure 3.3a, which scales the logit ݖ to the 

value between 0 and 1. If ݖ = 0 the output is exactly 0.5, showing a characteristic S-shape. It 

uses the function 

݂(ݖ) =
1

1 + ݁ି௭ . (3. 3) 

  
a) 

 
b) 

Figure 3.3 The output ݕ of nonlinear activation functions: a) sigmoid and b) ReLU as the 
logits ݖ varies. 

The rectified linear unit (ReLU) is typically the default choice of activation function in 

modern neural networks since it is a function with two linear pieces [34]. ReLUs preserve the 

many properties that make linear models generalize well and are easy to optimize with gradient-

based methods [35]. ReLU uses the function ݂(ݖ) = max(0,  .(ݖ

3.2.2 A Network of Neurons 
The simplest form of ANN, shown in Figure 3.4, consists of three layers of neurons, the 

input layer, the hidden layer, and the output layer. Information flows from the input to the 

output. Each connection has a weight and a bias with a respective activation function. A neural 

network can be measured by its capacity, which is the total number of weights and biases (both 

considered as parameters of the network), or by its depth, which is the total number of layers. 
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When a network is trained using supervised learning, it is provided with an input and an output. 

The input is fed through the network and the parameters will shape the input to some degree 

and then pass it to the next layer. 

 

Figure 3.4 A basic neural network with three layers. 

After reaching the output layer, the calculated value is compared with the original output 

and an error tells how far they are. A special function called the loss function (sometimes called 

the cost function or the error function) will determine how the difference in output is calculated. 

For a deep learning model, the architecture refers to how each layer in the network is 

connected, while the backbone refers to the feature extraction part of the model. Neurons from 

one layer are partially or fully connected to neurons from adjacent layers. When connections 

from far apart layers are made, these are called skip connections. Every connection will have a 

parameter that adjusts its value, called weights. These weights are also termed as the parameters 

of the network and are used to indicate its capacity. 

3.2.3 Gradient Descent 
To obtain optimal value for the weights of a network, optimization is needed to maximize 

the performance of the model by iteratively tweaking its parameters until the error is minimized. 

Gradient descent is a key technique for optimizing nearly any deep learning model [34]. It 

consists of iteratively reducing the error by updating the parameters of the model in the direction 

that incrementally lowers the loss function. Suppose a simple linear neuron with a single input 

with the weight ݓ, shown in Figure 3.5. The error function ℒ(ݓ) is obtained by considering the 

error over all possible values of ݓ. Without knowing ℒ(ݓ), the error can still be minimized by 

taking the gradient at the current position. For example, at position ܣ, there is a negative slope, 

indicating ݓ should be increased to minimize the error. Likewise, at position ܤ, the positive 

slope indicates ݓ should be decreased. 
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Figure 3.5 Visualizing the gradient descent algorithm for a simple neuron with a single 
parameter ݓ. 

The gradient indicates the direction of minima (think of it as a valley where the error is 

lower compared to nearby points). How large the step depends on the steepness of the slope. 

However, in certain cases, the cost function can be rather mellow, which can potentially prolong 

the training time. Therefore, the gradient is typically multiplied by a hyperparameter called the 

learning rate ߙ. Selecting the right learning rate is a tradeoff between speed and accuracy. A 

small value will risk a long training time, while a value too large will risk skipping away from 

a minimum. 

To calculate the change for each weight, the gradients are evaluated by taking the partial 

derivative of the error function with respect to each of the weights from the ݇-th layer 

ݓ∆ = ߙ−
߲ℒ
ݓ߲

. (3. 4) 

Applying this algorithm to the whole dataset (called the batch gradient descent) of examples 

can sometimes lead to problems. The error curve might be a flat line (in high-dimensional space 

it is known as a saddle point) which might lead to premature convergence. The solution to this 

is by estimating the error with respect to a subset of examples, which results in a dynamic error 

curve that potentially could help navigate through flat regions. This is called the mini-batch 

gradient descent. The number of examples in this subset is called the minibatch size (or 

sometimes just batch size) and is another hyperparameter for training [31]. 

3.2.4 Information Theory 
Information theory deals with the problem of encoding, decoding, transmitting, and 

manipulating information in a form as concise as possible. The central idea of information 
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theory is to quantify the information content in data. This quantity is called the entropy ℋ of a 

distribution ܲ, and is described by the Shannon entropy 

ℋ(ܲ) = −ܲ(ݔ) logత (ݔ)ܲ
௫

, (3. 5) 

where ߵ is the base of the logarithm. One of the fundamental theorems of information theory 

states that in order to encode data drawn randomly from the distribution ܲ, at least ℋ(ܲ) nats 

are needed to encode it. When using the natural logarithm with base ݁ , one nat is the amount of 

information gained by observing an event of probability 1/݁. In other fields, the base-2 

logarithms are used and therefore the units are called bits, which is essentially a rescaling of 

information measured in nats [34].  

Shannon entropy of a distribution is the expected amount of information in an event drawn 

from that distribution. It gives a lower bound on the number of bits (if the logarithm is base 2) 

needed on average to encode symbols drawn from a probability distribution ܲ. Distributions 

that are nearly deterministic (where the outcome is nearly certain) have low entropy; 

distributions that are closer to uniform (e.g.  = 0.5 for a binary random variable) have high 

entropy. 

Given two separate probability distributions ܲ(ݔ) and ܳ(ݔ) over the same random variable 

ܺ, the difference between these two distributions can be measured using the Kullback-Leibler 

(KL) divergence: 

(ܳ||ܲ)ܦ = ܲ(ݔ) log
(ݔ)ܲ
(ݔ)ܳ

௫

. (3. 6) 

For discrete variables, the KL divergence is the extra amount of information needed to send 

a message containing symbols drawn from a probability distribution ܲ, when using a code that 

was designed to minimize the length of messages drawn from a probability distribution ܳ. The 

KL divergence has useful properties: it is non-negative, and it will be 0 if and only if ܲ and ܳ 

are the same distribution in the case of discrete variables. Due to these properties, KL 

divergence is often used to measure the distance between two distributions. 

A quantity closely related to KL divergence is the cross-entropy 

(ܳ,ܲ)ாܥ = (ܲ)ܪ + .(ܳ||ܲ)ܦ (3. 7) 

Cross-entropy ܥா calculates the number of bits required to represent or transmit an average 

event from one distribution compared to another distribution. The result will be a positive 
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number measured in bits and will be equal to the entropy of the distribution if the two 

probability distributions are identical. 

In supervised classification tasks, cross-entropy is useful for optimizing the model. Each 

example has a known class label with a probability of 1.0 and a probability of 0.0 for all other 

labels. The model then estimates the probability of an example belonging to each class label. 

The difference between the true probability distribution and the predicted probability 

distributions can then be calculated using cross-entropy [36]. 

3.3 Convolutional Neural Network 
Computer vision is a research field that explores automated methods for understanding the 

world like human vision. Traditionally, features need to be extracted manually from images to 

improve the signal-to-noise ratio. Features such as edges that form shapes, and patterns of light 

and dark patches are lower-dimensional representations of the input image, which are then used 

by a Machine Learning classifier to make predictions. There are fundamental limitations of this 

approach, which does not handle well slight variations of the input, such as different light 

intensity, or slight occlusion. 

Among the early publications of CNNs was LeNet in 1998 [37], introduced by Yann LeCun 

and his team to solve the recognition of handwritten digits. Modern CNN was then popularized 

by Alex Krizhevsky and Geoffrey Hinton [38] who in 2012 won the image classification 

challenge called ImageNet [39] and improved the error rate by a large margin. 

3.3.1 The convolution layer 
Dense layers learn global patterns in their input feature space (for example, for an image of 

a digit, it treats all the pixels as features), whereas convolution layers learn local patterns—in 

the case of images, patterns found in small 2D windows of the inputs. This gives Convolutional 

Networks two interesting properties:  

 Learning translation-invariant of patterns. For example, the specific pattern can exist at any 

location in the image, rotated or flipped, and will still be recognized. 

 Learning spatial hierarchies of patterns. The first convolution layers will learn low-level 

features such as edges, which the next layer will use as input. The deeper through the 

network, the more complex and abstract visual concepts can be learned. Ultimately, the final 

hidden layer learns a compact representation of the image that summarizes its contents such 

that data belonging to different categories can be easily separated. 
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The convolution layer operates over a 3D array usually called feature maps. It consists of 

the spatial axes (width and height) and the depth axes (also called the channels). For a natural 

RGB image, the depth will be 3 corresponding to the number of color channels: red, green, and 

blue. Once the input RGB image is processed, the depth no longer corresponds to the color 

dimension, but they rather stand for filters. For each convolution layer, there are two 

hyperparameters: the kernel size, which determines the size of the patch extracted from the 

input (e.g. a 3x3 filter), and the output depth of the output feature map, which is the number of 

filters computed using the convolution operation. 

A convolution works by sliding these filters over the 3D input feature map (dimensions: 

height, width, depth). Each 3D patch will result in a 1D vector (dimension: output depth) which 

is then reassembled to its corresponding patch location. The effectiveness of CNNs is to reduce 

spatial dimensions (which reduces computation but maintains coverage of the entire image) 

while increasing the number of feature maps (which increases the probability of recognizing 

salient features). This downsampling can be done in several ways: 

 The sliding window operates on a chosen tile, which is the center of the window, and its 

neighbors. Unless the filter size is 1x1, the patch outside the range of the input feature map 

cannot be selected, therefore it reduces the spatial dimension. For example, consider a 4x4 

input feature map which will be convolved with a 3x3 filter. There are only 4 possible tile 

locations to center a 3x3 window, resulting in a 2x2 output feature map. To produce the 

output feature map of the same size as the input, padding can be used to extend the input to 

fit center convolutional windows around every input tile. 

 Strides are another hyperparameter that affects the output size. Stride is the distance 

between the center tiles of each sliding window. Using a stride of 2 for example, will result 

in a downsampling by a factor of 2. 

 Pooling layers can be used to aggressively downsample feature maps. Unlike strided 

convolutions (using a stride >1), the pooling operation does not have a learnable parameter, 

therefore reducing computation. Pooling works similarly to convolution where a sliding 

window is applied to the feature map, but the output is simply a reduced operation of the 

patch, e.g. maximum, average, or minimum. 

3.3.2 Segmentation Models 
Segmentation is the task of partitioning the image into regions based on the similarity (alike 

characteristics within the same class) and discontinuity (the border or edge between different 
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classes) of pixel intensity. For binary class segmentation such as building footprint extraction, 

there are only 2 classes: the positive examples, i.e., pixels belonging to a building’s region, and 

negative examples, which are the rest of the pixels (non-building). The segmentation model is 

given a pair of image inputs and semantic labels for training. The iterative process outputs a 

single channel similar-sized image classifying each pixel as belonging to one of the classes. In 

multi-class segmentation (illustrated in Figure 3.6), typically the output is an image with the 

number of channels corresponding to the number of classes. 

 

Figure 3.6 Illustration of multi class segmentation. Satellite image from Maxar [5]. 

For remote sensing tasks, UNet [40], DeepLab v3 [41], PSPNet [42], and Feature Pyramid 

Network (FPN) [43] are commonly used as network architectures. These are categorized as 

encoder-decoder type architectures, which are commonly used for segmentation tasks. The 

encoder part is usually called the backbone and acts as the feature extractor. Popular CNN 

architectures benchmarked on the ImageNet dataset are typically used as backbones such as 

[44], Inception [45], and EfficientNet [46]. Each backbone also has a range of capacity 

(measured in the number of weights/parameters) to allow flexibility for optimizing performance 

or inference speed.  

Despite different network configurations, the way data propagates in a segmentation model 

is typically similar. A review of segmentation architectures and backbones can be found in [47], 

[48]. Below is a brief explanation of the FPN architecture (shown in Figure 3.7), used in 

previous studies [15], [49], and in chapters 5 and 7 of this dissertation. 

FPN utilizes feature pyramids, which aim to better capture multi-sized objects by using 

multi-scale input. In the encoder, the image input is scaled down using a convolution operation 

with a stride of two (red arrows), which cuts the image dimension in half at each pyramid level. 

As the data flows up the pyramid, the top layer will have the least width and height (the original 

input’s size divided by 32) but the richest semantic information (1632 feature maps or 
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channels). In a classification task, this is compressed further to output a vector with the same 

size as the number of classification labels [43]. For a segmentation task, an output with the 

same spatial size as the input is required. Therefore, the top layer needs to be upscaled. 

A 1 × 1 convolution filter is applied to the final layer in the encoder pyramid to reduce the 

number of feature maps to 256, without modifying the image dimension. As data flows down 

the decoder’s pyramid, the width and height increase twice using nearest neighbors upsampling 

(green arrows). In the skip connections (yellow arrows), feature maps from the same pyramid 

level in the encoder and decoder were concatenated. A 1 × 1 convolution was used to scale the 

feature maps from the encoder pyramid to 256. This provides context for better localization as 

the image gradually recovers in pixel resolution. Afterward, feature pyramids from the decoder 

go through a Conv and Upsample operation (black arrows), resulting in modules with 128 

feature maps and image dimension 1/4 of the original input. These are then stacked channel-

wise, creating a module of 512 feature maps. A final Conv and Upsample operation reduces the 

number of channels to 1 and restores the image dimension back to the original input [50]. 

 

Figure 3.7 Network configuration of FPN, a type of encoder-decoder architecture for 
segmentation tasks, illustrated for segmenting buildings in SAR image (binary class). 

EfficientNet backbone was used as the encoder. 

3.4 Evaluation Metrics 
The most common method to evaluate classification performance is computing the accuracy 

by comparing predictions with their ground truth. However, counting the number of correct 

matches alone does not usually work well in real-world problems due to class imbalance [51]. 
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To give better insights on how the model distinguishes positive and negative classes in a 

binary classification problem (see Figure 3.8), the predictions can be categorized as: 

 True positive (TP): the model correctly predicted the positive class. 

 False positive (FP): the model incorrectly predicted a positive class (actual class is 

negative). This is also known as type I errors. 

 False negative (FN): the model incorrectly predicted a negative class (actual class is 

positive). This is also known as type II errors. 

 True negative (TN): the model correctly predicted the negative class. 

 

Figure 3.8 Recall and precision in binary classification [52]. 

The two types of errors conflict with each other, as minimizing one might increase the 

likelihood of the other occurring. This optimization depends on the specific problem and its 

consequences. To balance the trade-off, the following classification metrics are often used: 

 Recall: in the context of binary classification, recall is the same metric as sensitivity or True 

Positive Rate. Consider the recall metric when prioritizing to minimize false negatives (e.g., 

in cancer diagnosis) 

recall =
TP

TP + FN . (3. 8) 

 Precision: also called the positive predictive value, it describes the portion of predicted 

positives that are correctly classified 

precision =
TP

(TP + FP) . (3. 9) 
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Usually, precision and recall scores are not reported in isolation. Instead, values for one are 

compared at a fixed value of the other (e.g., precision at recall of 0.5). They commonly exhibit 

an inverse relationship where it’s possible to increase one at the cost of the other. The ܨଵ score 

is the harmonic mean of precision and recall, therefore symmetrically represents both in one 

metric. It is defined as 

ଵܨ = 2
precision ∙ recall

precision + recall . (3. 10) 
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4 Deep Learning for Building Unit Damage 
Assessment using SAR: Progress and Challenges 

4.1 Introduction 
Identifying building damage after the occurrence of large-scale natural disasters can 

optimize logistics and resources to prioritize areas with higher concentrations of damage. For 

example, during the 2023 Syria-Turkey earthquake, 50 thousand people were found trapped 

under the debris of collapsed buildings [2]. Instead of a costly and risky ground survey, remote 

sensing images such as SAR can cover large areas allowing a quick and comprehensive 

overview of the affected areas. 

Optical and SAR images are typically the main choice for BDA post-disaster. Optical 

images show the earth’s surface similar to how humans see, therefore being easier to interpret. 

However, SAR is more reliable in providing measurements owing to its active sensors that can 

penetrate through clouds and independent of sunlight. Despite the radar images being less 

intuitive than optical images, in the event of a large-scale natural disaster, any data to help 

emergency response is valuable. In addition, SAR can penetrate through clouds, fog, smoke, 

and dust, which typically occludes a scene after a disaster. With the many constellations of small 

SAR satellites [53], collecting post-disaster data will be trivial. 

For rapid damage assessment based on SAR data, there are mainly three techniques 

involved: first, by analyzing a single post-event VHR SAR data, second, by doing change 

detection of pre and post-event data pair from the same sensor, and last, by combining optical 

and post-event SAR data [54]. The disturbance of linear characteristics of buildings in radar 

images can reflect the levels of damage, mainly due to loss of elevation. Debris from damaged 

buildings also shows as strong scatterers. Manual interpretation of damage from SAR should 

consider the orientation of the building, the geometric features of the SAR system (look angle 

and direction) and the surrounding environment of the target building [54]. 

An excellent classification of BDA methods using SAR was reviewed in [55]. Methods were 

classified based on the unit of analysis (block units or building units), chosen SAR feature for 

analysis (intensity, polarimetric, interferometry or coherence), and availability of pre-event data 

(only post-event analysis or change detection using both pre- and post-event). 

The surge in neural networks success paves the way for DL based approaches in remote 

sensing and signal processing. Neural networks are powerful feature extractors, utilizing the 
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abundance of data to learn hidden patterns from labels. Inspired by the works in [55], this review 

aims to cover a more specific aspect of SAR BDA using DL algorithms. 

First, the interpretation of building damage in radar images was explained using common 

SAR features: intensity, coherence, and polarimetry. Then, the state-of-the-art DL methods for 

BDA were reviewed, starting with optical-based BDA, then building detection in SAR, and 

ending with SAR-based BDA. Third, open-source SAR data for disaster analysis was reviewed. 

Finally, the challenges and opportunities for DL-based SAR BDA were discussed.  

The main contributions of this review chapter are the following: 

 Summary of state-of-the-art DL-based methods for building-unit damage assessment. 

 Review of open-source data for disaster analysis using SAR and DL. 

 Challenges and opportunities for DL-based approaches for SAR BDA. 

4.2 Physical interpretations of building damage in SAR 
SAR data describes the radar reflectivity of the scene. The physical property of the terrain 

causes changes in both phase ߶ and amplitude ܣ of the scattered electromagnetic wave. 

Depending on the acquisition mode of spaceborne or airborne SAR, the intensity, phase, and 

polarimetry features can be used to identify building damages. 

4.2.1 Intensity 
Intensity refers to the mean amplitude of the recorded backscatter that is influenced by 

operating parameters of the radar system, such as incidence angle and wavelength, and the 

characteristics of ground targets, such as their dielectric properties and roughness [55]. 

Generally, an intact building will show a layover pattern towards the sensor and cast shadows 

in the opposite direction. Typically a strong L-shaped pattern emerges, showing the echoes 

formed by the wall and the ground [56]. When a building collapses, the layover, the L-shaped 

pattern, and even shadow patterns might disappear or decrease, creating a more random pattern. 

Two different building conditions are highlighted in Figure 4.1, the building on the right, despite 

showing some debris, is still standing. Meanwhile, the building on the left was destroyed. The 

radar patterns are recognizably different, where the intact building still showed layover towards 

the right of the image, an L-shaped pattern, and shadow. While the destroyed building showed 

random patterns from the remaining debris. 
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Figure 4.1 Image of a collapsed building next to an intact building in a) optical images from 
Maxar [5] and b) VHR SAR from Capella space [6]. In c) the collapsed building resulted in 

an interruption of the linear characteristics in the SAR intensity value. 

The difference on absolute value of intensity from bitemporal SAR images can be used to 

quantify ground changes caused by a disaster [55]. However, only using intensity change is not 

reliable, since higher change can be observed not only in damaged areas [57]. Features derived 

from intensity information such as correlation coefficient [58] and texture analysis [59], [60] 

are typically used to obtain a more accurate detection. 

In most cases, suitable archived pre-event SAR images are not available. This leaves only a 

single post-event SAR image for analysis, which opens a new research topic on extracting 

features to classify damage grades in buildings. Without polarimetric or interferometric mode, 

the post-event SAR image will have the best spatial resolution (i.e. spotlight mode), and enough 

information to identify individual buildings. However, when limited to only a single channel, 

there is not enough information to obtain the scattering mechanisms of the scene. This prompts 

research on using data-driven methods such as neural networks to train robust feature extractors 

for this complex task.  

4.2.2 Coherence 
When there are two images acquired by the same satellite system and covering the same 

area at different times, their electromagnetic wave interferences can be exploited. This is the 

principle of Interferometric SAR (InSAR). The phase in SAR data indicates the relative value 

of the returned backscattering waves in a full period. It is very sensitive to the distance between 

the satellite sensor and the ground target and can therefore be applied for ground change 

detection like shown in Figure 4.2. 
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Coherence ߛ indicates the cross-correlation of phase information in two SAR images. It is 

computed using [61] 

ߛ =
ॱ[ݑଵݑଶ∗]

ඥॱ[|uଵ|ଶ] ඥॱ[|ݑଶ|ଶ]
.  (4.1) 

where ݑଵ and ݑଶ are the amplitude values of image 1 and image 2, ݑ∗ denotes the complex 

conjugate of ݑ, and ॱ[ݔ] is the expected value of ݔ. 

The decorrelation of coherence usually indicates ground changes and can be used to quantify 

damage in disasters [62], [63]. A technique popularized by NASA’s Advanced Rapid Imaging 

and Analysis (ARIA) project used the difference of coherence between two pre-event SAR 

image pairs and coherence between a pre-event and a post-even pair. The former is called pre-

event coherence while the latter is called co-event coherence. This method can differentiate 

between areas where coherence is always low and areas where it has decreased, e.g., due to 

building collapse or landslides [64]. 

 

Figure 4.2 Interferometric analysis uses the phase difference between the pre- and post-
disaster SAR acquisition enabling the distinction between both buildings. 

4.2.3 Polarimetry 
A radar system transmits an electromagnetic wave, with a given polarization state, that 

reaches the scatterer of interest, and then receives the reradiated energy.  It is possible to infer 

some information about the scatterer considering the properties of the scattered electromagnetic 

wave with respect to the transmitted wave [26]. Electric field vectors of energy pulses emitted 

by a radar system can either be polarized in a horizontal (H) plane or in a vertical (V) plane. 

Regardless of wavelength, a SAR platform can transmit H or V electric field vectors, and then 

receive H or V return signals, yielding four types of polarization: HH, HV, VH, or VH, where 

the first letter denotes the transmit polarization and the last letter denotes the receiving 

polarization. 

A SAR system can be designed to work in a single polarization, dual polarization, or full 

(quad) polarization. The polarization features of multi-polarized SAR data are sensitive to 
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dielectric constants, physical properties, geometry, and the orientation of ground targets. 

Therefore, they can greatly improve the ability of imaging radar to acquire various information 

about the targets. 

The addition of polarimetric features has been shown to improve coherence change 

detection. Building damage assessment using Sentinel-1 satellite imagery in combined features 

of dual polarization VV and VH yields higher accuracy than using either type of polarization 

[57]. A similar study was found using dual polarization HH and HV from ALOS-2 satellite 

imagery [65]. 

Full polarization (also called PolSAR) information can provide richer descriptive features 

for understanding the scattering mechanisms of ground targets. The full polarization data can 

be represented as the scattering matrix ܵ [66] represented by 

ܵ = ܵுு ܵு
ܵு ܵ

൨ . (4.2) 

The scattering matrix can be formed into a Pauli scattering vector ݇ with the reciprocity 

condition applied 

݇ =
1
√2

[ܵுு + ܵܵுு − ܵ2ܵு]⊺, (4.3) 

where ⊺ indicates a matrix transpose. The coherency matrix ܶ can be obtained by multiplying 

݇ with its conjugate transpose ݇ு, given by [26].  

ܶ = 〈݇݇ு〉 = 
ଵܶଵ ଵܶଶ ଵܶଷ

ଶܶଵ ଶܶଶ ଶܶଷ

ଷܶଵ ଷܶଶ ଷܶଷ

൩ . (4.4) 

Various decomposition approaches have been proposed, such as eigenvalue-eigenvector 

based decomposition [67], the Freeman-Durden decomposition [68], and the four-component 

scattering model by Yamaguchi [69]. Scattering mechanisms such as the double-bounce, 

surface, and volume scattering can be derived from polarimetric decomposition as indicators 

for building damage assessment in disasters [70] [71]. By comparing two pre-event PolSAR 

images with one post-event PolSAR image, changes in decomposition components can infer a 

building’s condition after a tsunami [72]. Damage in built-up areas can also be described by 

other polarimetry parameters, such as polarization coherence, which can be used to characterize 

surface roughness [73], and the polarimetric orientation angle, which has a close relationship 

with building orientation [74]. 
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In a single post-event PolSAR image, the polarimetry features can still be potential 

indicators, since damaged and undamaged structures usually show different characteristics in 

different decomposition components. For instance, intact parallel buildings are usually 

characterized by double-bounce scattering, whereas collapsed buildings can be characterized 

by volume scattering [75]. However, undamaged buildings whose orientation is not parallel to 

the SAR flight pass and the collapsed buildings share similar dominated scattering mechanisms, 

i.e., volume scattering, creating ambiguity [76]. 

4.2.4 Unit of analysis 
Damage can be assessed in a block unit or building unit, as shown in Figure 4.3. An 

important factor is the spatial resolution of the SAR image, which is affected by the radar system 

and imaging mode. Medium-resolution images that are >20 m/pixel (by today’s standards) will 

show a 400 m2 building as a single resolution cell. This makes it difficult to identify features 

from individual buildings, therefore, it is more reasonable to use block-unit analysis. Block 

units can either be a consistent grid or irregular blocks that follow the urban boundaries. For 

submeter resolution SAR image, edges and texture from each building can be observed, 

enabling building unit analysis. 

 

  

Figure 4.3 Example of different unit analysis: (left) Building unit in binary class damage 
system of intact buildings and destroyed buildings. (right) Block unit in four class damage 

system. Optical images from Maxar [5]. 

4.3 State of the art 
Solving the task of building unit damage assessment in SAR using DL methods involves 

the awareness of neighboring research fields that are closely related to the problem.  
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4.3.1 Building footprint extraction in SAR 
Since the unit of analysis is individual buildings, the research field of Building Footprint 

Extraction (BFE) in SAR comes into inspiration. In 2017, neural networks were used to classify 

small patches of building areas in [77] resulting in a coarse prediction of built-up areas. Progress 

was made in 2018 when CNN was demonstrated capable of individual building detection in 

[78] from a VHR TerraSAR-X image and OpenStreetMap (OSM) building footprints as 

reference labels. Adriano et al. [79] developed a deep segmentation model for multiple cities, 

making an important observation of CNN’s generalization problem related to local urban 

scenes. The performance is lower for cities with dense and high-rise buildings such as Shanghai 

and Hong Kong due to the mixtures of layover patterns from nearby structures. The SpaceNet 

6 competition in 2020 [80] provided high-quality data for BFE in SAR. The openly available 

dataset consists of full polarimetric airborne SAR data with 0.5m spatial resolution, covering 

the port of Rotterdam, Netherlands. This dataset has been the benchmark in various BFE tasks 

in SAR or multi-modal SAR and Optical [81].  

4.3.2 Optical-based building damage assessment 
Classifying damage of individual buildings from satellite images is widely used in crowd-

sourced assessments for humanitarian initiatives. Optical images are the main source since it is 

easier to interpret by non-experts. DL methods are actively proposed to classify damage from 

optical images, to provide faster and more consistent analysis than crowd-sourced human 

labelers. The xView2 challenge, launched in 2020 played a major role in advancing DL methods 

for BDA. The organizers released the xBD dataset which consists of large-scale pairs of before 

and after optical images of a disaster [82]. The dataset covers five types of disasters from 

various geographic regions of the world, with damage labels grouped into four levels following 

the HAZUS method from FEMA [83]. A sample from the dataset is shown in Figure 4.4. From 

the literature, the Siamese network is used to classify differences from bitemporal RS images 

and grade the damage. Two-stage networks are also used, involving segmentation tasks using 

Unet [84] or transformer architecture [85], [86], then a smaller attention network that fuses or 

aggregates features from different time periods to classify the change. RescueNet was proposed 

for joint segmentation and damage assessment that can be trained in an end-to-end manner and 

simplifies multi-task supervision during the training stage [87].  
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Figure 4.4 A sample from the xBD dataset of the 2018 Tsunami in Palu, Indonesia [82], 
showing a) the pre-disaster image, b) the post-disaster image with the building damage 

overlaid, and c) the four-level damage scale used for labeling. 

DL methods in remote sensing data have the common issue of generalization [88] where 

different geographic scenes unseen in training exhibit lower performance. This is an issue in 

emergency response situations where training samples are almost unavailable. Therefore, deep 

learning models need to be robust to the distribution shift of unseen data [89]. Some studies 

explored transfer learning approaches for BDA using the xBD dataset [82] for its variety in 

geographic location and disaster type [90]. A different version of [82] was proposed to simulate 

real-world scenarios where the testing split is a new type of disaster or location, unseen in the 

training set [91]. Other studies applied transfer learning for an individual event rather than a 

group of disasters [92], [93]. In such cases, generalization is difficult to assess since each 

disaster behaves differently, and a model trained on one disaster may not work equally in a 

different event. Wiguna et al. [89] conducted an extensive experiment on different network 

architecture and loss functions for predicting building damage in historical disasters and 

evaluated them on new unseen events. They conclude that a combination of cross-entropy loss 

and focal loss yields better scores. Their transformer network achieved state-of-the-art results 

in xBD with a mean F1 score of 77.79 for all four damage classes. However, transformers have 

large parameters that take considerable processing resources. From a humanitarian aid 

viewpoint, the value of automating damage assessment lies in speed improvement rather than 

pushing marginal improvements in accuracy. 

Disaster impact information is good for immediate response, but long-term recovery 

programs require a combination of other socio-economic data. Therefore, prediction output in 

the form of geo-referenced vector data is important for analysis. The work from Microsoft lab 
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proposed a model that is three times faster than the winning solution of xView2 challenge with 

only a 0.05 reduction in mean F1 scores [94].  

4.3.3 Building-unit damage assessment in SAR 
Not much research has been proposed for building unit damage assessment in SAR since a 

very high-resolution is needed to ensure sufficient pixels can describe each building footprint 

for analysis. Several studies combined the block unit damage assessment with building footprint 

information that sets the boundaries for the calculation of average parameter value [95], [96]. 

This allows a compromise of SAR resolution for rich polarimetric features. Brett [97] proposed 

an algorithm to extract bright curvilinear features that represent double bounce mechanisms in 

urban areas. The extracted features were used as a mask to identify locations where features of 

interest have changed from the bitemporal pair of SAR images. Bai et al. [98] trained a 

SqueezeNet neural network on a single post-event TerraSAR-X image to detect built-up areas 

and a residual network to classify washed-away buildings within the built-up areas. 

Beyond SAR data, multimodal features have shown promising results. Rao et al. [99] 

combined high-resolution building inventory data, ground shaking intensity maps, and pre-and 

post-event InSAR-derived surface changes to perform multi-level and binary damage 

classification for four recent earthquakes. They compared their predicted damage labels with 

ground truth data from on-site surveys and achieved successful identification of over 50% of 

damaged buildings using binary classification for three out of the four earthquakes studied. 

Data availability needs to be considered following a disaster. Adriano et al. [79] collected a 

multimodal dataset of bitemporal SAR and optical images for three large-scale disasters with 

various geographic coverage. Their work evaluates CNN for building-unit damage assessment 

by considering five data availability scenarios: whether SAR or optical modality is available in 

only post-event or together with a pre-event. They conclude that the highest accuracy model 

was trained on the scenario of bitemporal optical data, meanwhile, scenarios with SAR data 

involved are still challenging. 

4.4 Advancing open research on building damage assessment 
4.4.1 Public Dataset 

For training deep learning models, a relatively large dataset with high-quality labels is 

needed. Many public datasets for humanitarian assistance and disaster relief (HADR) 

applications were proposed, as shown in Table 4.1. However, only a single dataset utilizing 

SAR is available.  
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Table 4.1 Overview of public datasets for natural disaster analysis 

Dataset name Image type Temporal Task 
# of labeled 

class 

ABCD [100] Optical (Satellite) Unitemporal Classification 2 

fMoW [101] Optical (Satellite) Multitemporal 
Classification, Change 

Detection 63 

xBD [82] Optical (Satellite) Bitemporal 
Change Detection, 

Segmentation 4 

RescueNet [102] Optical (UAV) Unitemporal Segmentation 10 

MSCDU [103] 
Optical, MS, SAR 

(Satellite) Bitemporal 
Change Detection, 

Segmentation 2 

QuickQuake [104] SAR (Satellite) Unitemporal Classification 2 

 

4.4.2 Open data providers (SAR data) 
As with most research on BDA using SAR, the data for analysis were sourced from 

commercial providers. This limitation is holding back the advancement of DL approaches, 

which generally produce high-quality data. Fortunately, there is an increase of open and free 

SAR data collected by the twin Sentinel-1A/B sensors of the European Union (EU) Copernicus 

constellation, which allows fast mapping of damage after a disastrous event using radar data. 

Commercial satellite companies also launch open data programs for various applications 

including humanitarian disaster response. ICEYE [8], Capella [6], and Umbra [7] are among 

the commercial small satellite X-band SAR providers that actively share SAR images freely. 

ALOS-2 data from the Japanese Aerospace Exploration Agency (JAXA) in 3 m resolution 

StripMap mode were recently released as free to use for the 2024 Noto Peninsula earthquake 

[105]. To accommodate analysis, Maxar also regularly publishes VHR optical images, mainly 

for aiding disaster response [5]. A rich collection of remote sensing data and assessment was 

released for the 2023 Turkey-Syria earthquake as shown in Figure 4.5. 
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Figure 4.5 Extent of various open data for humanitarian purposes in the 2023 Turkey-Syria 
earthquake. Highlighted in blue and green are VHR X-band SAR data provided by Capella 

and Umbra space respectively. Highlighted in gray are large coverages of VHR optical, before 
and after the event, provided by Maxar. Highlighted in red are the building damage 

assessments for 20 cities in Turkey conducted by the CEMS. 

4.4.3 Damage Assessment (labels) 
Many international charters were built to archive disasters such as the CEMS [106], NASA’s 

Jet Propulsion Lab (JPL) Advanced Rapid Imaging and Analysis (ARIA) [107], International 

Disasters Charter [108], and Sentinel Asia [109]. CEMS typically provides a manual or semi-

automatic delineation map of various disasters in various forms including vector data. 

Meanwhile, other charters share only the analysis map, which limits their direct use as reference 

labels. 

OpenStreetMap (OSM), an open geographic database updated and maintained by 

collaborative volunteers, also has a community named Humanitarian OpenStreetMap Team for 

crowd-sourced remote damage assessment using satellite imagery. Such initiatives are often 

used for rapid GIS-based mapping in humanitarian responses [110]. However, OSM 

contributors tend to overestimate destroyed or collapsed buildings and underestimate major or 

minor damaged ones [111]. This was concluded in an assessment study comparing remote 
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damage assessment with field surveys, where the differences are mainly due to the limitations 

of the satellite imagery in terms of resolution and field of view making it difficult to assess the 

extent of damage [111].  

Global building footprint data are essential tools when working on building-unit analysis. 

The recently launched GlobalBuildingMap dataset [112] covers global areas for temporal 

coverage between the year 2018 and 2019. However, they have a spatial resolution of only 3 m 

which potentially misses out on smaller size buildings. Microsoft [113] and Google [114] also 

have large coverage of building footprint datasets with spatial resolutions of 0.5 m and between 

0.3 - 0.6 m, respectively. 

4.5 Discussion 
Accurate identification of damaged buildings using SAR involves analyzing the change of 

SAR features before and after the event [55]. However, such VHR SAR data are typically tasked 

after a disaster has occurred preventing the use of change detection methods.  

4.5.1 Challenges 
Various studies mentioned in Section 4.2 attempt to quantify damage levels based on SAR 

properties used for analysis. However, the level of damage defined by natural hazards 

guidelines (e.g. from earthquake or tsunami analysis) is too complex to be identifiable from 

space. Thus, with more granular levels of damage, i.e. light or moderate grades, the accuracy 

of damage grades decreases [111], because cracks on the walls and detached joints are almost 

undetectable in satellite imagery. Nevertheless, from the point of view of emergency mapping 

and site reconnaissance, the main concern is the distribution of damage for prioritizing 

resources. 

There is no unified benchmark for objective comparisons of remote sensing methods. In the 

computer vision community, the large-scale ImageNet [39] dataset is typically used to evaluate 

newly developed deep learning models. However, proprietary high-quality data are typically an 

advantage in the remote sensing community. For the task of building damage assessment, xBD 

is typically used as the benchmark [115]. Meanwhile, in SAR, several large-volume datasets 

have been published that address object detection [116], change detection, and multi-modality 

study [103], but still none yet for damage assessment. 

4.5.2 Future directions 
Many deep learning approaches use supervised learning, which requires large amounts of 

high-quality labels for training. This becomes a bottleneck in certain fields like medical imaging 
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and SAR remote sensing where labeled data is difficult to collect due to costly measurements 

or due to rare events. In most deep learning-based SAR studies, the reference labels are typically 

from crowd-sourced initiatives using optical data. This creates disparities between the ground 

truth and the radar features. Several proposed solutions are using simulated data or semi-

supervised learning. 

Simulated data are typically used in fields that require complex interaction within an 

environment such as self-driving cars and various tasks in robotics. In SAR, various simulation 

tools have been developed for urban areas, primarily used for mission planning, scientific 

analysis of complex backscattering, and for geo-referencing [25]. Simulators can be used for 

sensor design, algorithm development, and training. 

Ray tracing methods can be used to simulate how objects appear in SAR images. This in 

theory can provide infinite synthetic training data or obtain measurements representing various 

environment conditions and acquisition modes, which is a difficult task to attempt in real-world 

scenarios. SAR simulators were used to improve object detection of ships [117] and military 

ground vehicles [118]. 

However, the practical use of synthetic SAR data is impeded by simplified reflection models 

and less reliable simulation of surface interactions. Difficulties of synthetic data generation 

scales with more details or more complex environments, such as an urban scene. Detailed 

building models such as buildings, balconies, and other façade details, are necessary to match 

the simulated 3D urban area with real-life radar signals [119]. These 3D models are commonly 

created through the photogrammetric analysis of aerial imagery or data obtained from airborne 

light detection and ranging (LiDAR) systems. A triangle mesh of the roof and vertical walls of 

buildings can be generated using a 2.5D contouring method [120]. For open-source research, 

the newly released Building3D dataset [121], which contains city-scale 3D building models in 

the form of point clouds, wireframes, and triangle mesh, can be useful for simulating an urban 

landscape. In future works, post-disaster building models can be used to simulate unique radar 

signatures from various damaged structures. Ho et al. showcased the potential of simulated 

SAR data for damage assessment. Using 3D building models of varying damage conditions, 

unique backscatter changes from layover and debris can be observed. Moreover, various look 

angles can be used, increasing the variety of simulated damaged patterns which can be 

harnessed by machine learning models [122]. 

Another solution to address the scarcity of labeled data is to use methods that rely on less 

labeled data, such as Self-Supervised Learning (SSL). Unsupervised deep learning models still 
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generally rely on pretraining of labeled data, which can pose issues of adapting between 

different modalities for remote sensing data [123]. In contrast, SSL methods can exploit 

unlabeled SAR data through pretext tasks such as predicting the angle of a rotated image or 

identifying if an augmented view of a sample is similar. A particularly popular method is the 

contrastive learning approach, which attempts to bring similar sample pairs closer in the latent 

space and separate dissimilar pairs apart [124]. A SAR feature extractor using SSL was 

proposed in [125] where the pretext tasks were designed specifically for SAR, such as log 

amplitude shift, sub-aperture decomposition, and despeckling. The trained model was evaluated 

on multiple datasets and downstream tasks, demonstrating the generalization capability of SSL 

methods. 

4.6 Conclusion 
SAR shows great potential for identifying damaged buildings in post-disaster crises. 

Multiple SAR features were summarized to classify intact buildings and damaged ones, with 

the best approach being multitemporal full-polarization data spanning over the period of the 

event. However, PolSAR data and suitable pre-event SAR data are not always available, 

therefore deep learning methods are among the best solutions when only post-event data are 

available.  

A review of deep learning-based building damage assessment was presented. For this task, 

more studies used optical-based solutions compared to SAR. Optical features were also found 

to yield much higher damage assessment compared to SAR. This is mainly attributed to the 

lack of open and public high-quality data for advancing this research. Open SAR datasets are 

becoming more available, but labels are mostly still inferred from crowd-sourced data, which 

are known to have inconsistencies. 

Finally, for future research, three solutions were proposed: first, a more integrated data 

collection for a comprehensive study on disaster assessment, which aims to have a high-quality 

benchmark dataset for this task, second, generating synthetic data through SAR simulators and 

accurate post-disaster building damage models, and third, adopting semi-supervised learning 

approaches to maximize the usage of unlabeled SAR data. 
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5 Data Augmentation for Building Footprint 
Segmentation in SAR Images: An Empirical Study 

5.1 Introduction 
Buildings are the main structures in any urban area. A building’s footprint is a polygon 

surrounding a building’s area when viewed from the top. Maintaining this geographic 

information is vital for city planning, mapping, disaster preparedness, or other large-scale 

studies. SAR provides consistent imagery compared to optical sensors, therefore, enabling 

consistent updates on the source of geospatial data. However, its unique properties are difficult 

for non-experts to analyze. This fact leads to the exploitation of automated methods such as DL 

using CNNs. 

Automated building detection in VHR SAR images was demonstrated using CNN in [78], 

[126]. However, such a task is challenging due to complex backgrounds and multi-scale objects. 

High-rise buildings are particularly challenging due to a phenomenon called layover, which 

projects the building’s wall at the ground towards the sensor, confusing pattern recognition 

algorithms. An extensive search space on various architectures, pre-trained weights, and loss 

functions for segmenting building footprints from optical and SAR images was performed in 

[127]. It was found that the diverse building areas and heights in different cities were 

problematic. Small-area buildings, mostly found in Shanghai, Beijing, and Rio, were 

undetectable, while high-rise buildings (mostly in San Diego and Hong Kong) degraded the 

model’s performance due to extreme geometric distortions. Those models performed well in 

cities such as Barcelona and Berlin because most of the buildings were of moderate size and 

height. 

Predicting well on unseen data or the ability to generalize is the main goal of training a deep 

learning model. It is a generally accepted fact that deep neural networks perform well on 

computer vision tasks by relying on large datasets to avoid overfitting [128]. Overfitting 

happens when a model fits its training set too well. This results in low accuracy predictions on 

novel data. For the task of building footprint extraction, a handful of datasets from optical 

sensors exist [129],[130], but unfortunately, not many datasets with VHR SAR data are 

available for public usage. 

As discussed in the previous chapter, for data that are expensive to collect and label, such 

as radar or medical images, a common technique to boost performance is using data 
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augmentation (DA). DA increases the set of possible data points, artificially increasing the 

dataset’s size and diversity. It potentially helps the model avoid focusing on features that are 

too specific to the data used for training, therefore, increasing generalization (the ability to 

predict well on data not seen during training) without the need to acquire more images [131]. 

In remote sensing, Illarionova et al. [132] performed object augmentation to increase the 

number of buildings in optical remote sensing images and demonstrated better building 

extraction performance. In SAR imagery, Yang et al. [133] showed improvements in paddy rice 

semantic segmentation by applying quarter-circle rotations and random flipping. Random 

erasing [134] on target ships was performed in [135] to simulate information loss in radar 

imagery and improve the robustness of object detection. 

In this chapter, extensive experimentation on DA methods was explored using the 

SpaceNet6 [80] dataset for automated building footprint extraction. Performance comparisons 

were demonstrated, and algorithm effectiveness and trade-offs were discussed. 

5.2 Methods 
5.2.1 Dataset overview 

SpaceNet6 was a competition to extract building footprints from multi-sensor data. The 

SAR data consists of quad polarization X-band sensor taken from an aerial vehicle, covering 

120 km2 of Rotterdam port, Europe. The large images were split into tiles of 450 m x 450 m, 

with 0.5 m spatial resolution in both range and azimuth direction. Images were captured using 

two flight orientations: north facing (orient1) and south facing sensor (orient0). Figure 5.1 

shows the tile over a base map of Rotterdam city, marking the position of images from orient1 

in green and orient0 in red. The direction of flight is indicated by the azimuth (ܽݖ) arrow, while 

the sensor’s direction is given by the range (݃ݎ) arrow. Each orientation creates different 

characteristics of how a building looks, namely the shadows and layovers.  
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Figure 5.1 (a) The map of Rotterdam Port area (UTM Zone 31N) overlaid with tile boundaries 
for all 3401 tiles in the SpaceNet6 training set [80]. The optical RGB image is provided for 

comparison. Green tiles are orient1 while red tiles are orient0. To showcase the data 
augmentation methods in this study, only the green tiles (orient1) were used for training. 

Some building footprints are highlighted as an example of layover effects in (b) orient1 and 
(c) orient0 tiles. Notice the direction of a layover is always projected towards the sensor’s 

position (near range) while the shadow is cast away from the sensor. 

For training the Building Footprint Extractor algorithm, only the HH polarization was used 

out of the quad polarization data. Moreover, from the two flight orientations, only tiles from 

orient1 (covering the northern part of the city) were used. These constraints were applied to 

showcase the effectiveness of data augmentation methods which help solve overfitting due to 

limited data. 

For evaluating the algorithm’s performance, a separate dataset was processed from the 

expanded data version of the competition. This expanded data was released after the 

competition was finished, consisting of unprocessed Single Look Complex (SLC) SAR data 

covering a different part of Rotterdam port, i.e. the eastern part of the area shown in Figure 

5.1a. This was used due to the high overlap between tiles in the training data, which can cause 

data leakage (part of the same samples shown in training and validation data). As with the 
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training data, only the orient1 data and HH polarization were used. These SLC data were 

processed similarly to the SpaceNet6 dataset as explained in their paper [80] which were then 

split into the same tile size as the training data.  

5.2.2 Segmentation Model 
For general building footprint extraction, there are only 2 classes: the positive examples, 

i.e., pixels belonging to a building’s region, and negative examples, which are the rest of the 

pixels (non-building). Building footprints taken from overhead images typically have various 

sizes. To differentiate a building from the background, enough pixels should feature the whole 

or most parts of the building. This means a higher spatial resolution is required for detecting 

buildings with a smaller area while a larger coverage is needed to see large buildings. A common 

method in computer vision to help the model learn these multi-sized objects is to use multi-

scale input, i.e., the input image downscaled to different pixel resolutions. Feature Pyramid 

Network (FPN) [136] utilizes image pyramids as explained in Section 3.3.2. The model used in 

this study combines the FPN architecture with the EfficientNet B4 backbone, which from 

previous studies [16], showed better results compared to UNet [40] architecture or ResNet [44] 

backbone. EfficientNet is a family of CNN models generated using compound scaling to 

determine an optimal network size [46] while B4 is one of their models with 17.5 million 

parameters. 

5.2.3 Training and Evaluation 
The training was performed in a Kaggle Kernel, a cloud computing environment equipped 

with a 2-core processor and an Nvidia P100 GPU (Graphics Processing Unit) with 16 GB of 

video memory (VRAM). The training pipeline was built using the TensorFlow framework and 

the Segmentation-Models library [137]. Adam [138] was used as the optimizer with default 

parameters and a cosine annealing learning rate scheduler [139] was used to modify ߙ.  

For model evaluation, the Intersection over Union (IoU) metric was used which is the ratio 

of overlapping between the predicted area and the real area (Figure 5.2). In this case, it is a 

pixel-based metric. A higher IoU indicates better predictive accuracy. True Positives (TP) are 

pixels labeled as building and are correctly predicted as building. True Negatives (TN) are 

pixels labeled as background and are correctly predicted. False Negatives (FN) are misclassified 

background pixels, while False Positives (FP) are misclassified pixels of buildings. IoU is 

calculated using 
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IoU =
௧ݕ ∩ ௗݕ
௧ݕ ∪ ௗݕ

=
TP

TP + FP + FN . (5.1) 

 

Figure 5.2 An example of how IoU is calculated over an optical image of a warehouse 
building. Image from SpaceNet6 dataset [80]. 

Calculating statistics over each image tile in the training set, 20% of tiles have less than 1% 

positive samples (pixels classified as buildings) (Figure 5.3a). This indicates that most tiles 

contain high negative samples (background pixels). One must be cautious in selecting a loss 

function for training a model on a skewed data distribution such as this because the negative 

samples will dominate the predictions. For example, using a binary cross-entropy as the loss 

function, the model will obtain a minor error even if it predicted the whole image as background 

pixels. 

  
(a) (b) 

Figure 5.3 Per image tile statistics for the training set, normalized. (a) shows the distribution 
of positive samples compared to the total number of pixels in an image tile and 20% of tiles 
have less than 1% of total pixels categorized as buildings. (b) shows the number of building 

counts for each image tile. Most tiles (17.5%) contain less than 5 buildings. 

Several loss functions were experimented with, and it was concluded that Dice Loss [140] 

leads to better convergence for this dataset. It is based on the Dice Coefficient, which is used to 



64 
 

calculate the similarity between two samples based on the degree of overlapping, resulting in a 

loss or error score ranging from 0 to 1, where 0 indicates a perfect and complete overlap. Dice 

loss is simply 1-Dice Coefficient 

ݏݏܮ = 1 − 2
௧ݕ ∩ ௗݕ
௧ݕ + ௗݕ

. (5.2) 

5.2.4 Ablation study 
The impacts of various data augmentation methods will be assessed in an ablation study, 

which uses the same model and training configuration with different transformations during the 

data loading process. Subsets of the training dataset were used as training and validation data 

during the ablation study. To avoid confusion these sets will be named mini-training set and 

mini-validation set, which contains 37% and 23% samples from the main training set, 

respectively. After concluding which augmentation works well for the mini dataset in the 

ablation study, combinations of positively impactful transformations were applied to the main 

dataset. 

5.3 Data Augmentation 
This section describes the data augmentations used in this chapter and how they were 

implemented during the model’s development. In general, the geometric transformations 

(including reduce transformation) were applied using TensorFlow operations, while pixel 

transformations were applied using the Albumentation library [141]. Transformation methods 

have names in Capitalized Bold format, while Class names from the Albumentation library 

used to implement those transformations are in CamelCase italic format. 

5.3.1 Reduce Transformation 
These operations were intended to maintain a square aspect ratio and reduce the image input 

to fit the GPU’s memory. All resizing methods used bilinear interpolation, downsampling the 

tiles to 320 by 320 pixels, which allowed the batch size of eight for the single P100 GPU. Two 

main resize methods were tested: 

 Pad Resize: no-data regions are added to create a square aspect ratio, taking the minimum 

pixel value of 0.0, and centering the image.  

 Distorted Resize: the rectangle-shaped tile is resized to the square target resolution, 

distorting the shape of the image, but no black regions are present. 
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This downsampling process can be exploited to introduce randomness that further increases 

the diversity of the training samples. Cropping at random locations gave better details than just 

resizing the whole image as shown in Figure 5.4. However, because it introduces randomness, 

these methods cannot be used as a reduction method for the validation dataset: 

 Random Crop: a random region is cropped out of the rectangle image. This preserves pixel 

scale since no downsampling is performed. 

 Random Crop and Resize: crops a random location with a random scaling, then 

downsample it to the target resolution. 

Pad Resize Distorted Resize 

Random Crop Random Crop Resize 

Figure 5.4 Summary of the used reduce transformations. 

5.3.2 Geometric Transformation 
In computer vision tasks, geometric transformations are cheap and easy to implement. 

However, it is important to be aware of choosing the transformations’ magnitude that preserves 

the label in the image. For example, in optical character recognition, rotating a number by 180° 

can result in a different label interpretation in the case of the numbers six and nine. 

Flipping an image along the horizontal or vertical centerline is a common data augmentation 

method. Referring to Figure 5.1a, the range direction ݃ݎ for this dataset is on the vertical or ݕ-

axis, while the flight direction ܽݖ is on the horizontal or ݔ-axis. The Horizontal Flip does not 

alter the properties of a radar image. It would be as if the vehicle carrying the sensor was moving 
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in the opposite direction. In contrast, the Vertical Flip makes the shadows and layovers appear 

on the opposite side, creating inconsistency. 

Rotation helps the model learn the invariant orientation of a building. Rotation90 or quarter 

circle rotations {90°, 180°, 270°} and Fine Rotation with a randomized angle range, e.g., 

[−10°, 10°] were chosen. Similar to vertical flip, the quarter circle rotation affects the imaging 

properties of the radar. The fine rotation exposes an area where image data is unknown which 

was filled with the lowest value.  

Shear is a distortion along a specific axis used to modify or correct perception angles. 

Despite SAR being a side-looking imaging device, the processed SAR image appears flat owing 

to the orthorectification process that corrects geometric distortions. In ShearX, the edges of the 

image that are parallel to the ݔ-axis stay the same, while the other two edges are displaced 

depending on the shear angle range. ShearY is the exact opposite. Figure 5.5 illustrates shear 

in both directions. The shear rotation was set to be randomized between an angle range of 

[−10°, 10°]. 

 

Figure 5.5 Shear transformations in 2 directions. 

Random Erasing is an augmentation method inspired by the drop-out regularization 

technique [142]. It simply selects a random patch or region in the image and erases the pixels 

within that region. The goal is to increase robustness to occlusion by forcing the model to learn 

an alternative way of recognizing the covered objects. The erased patches were filled with the 

lowest pixel value. Random erasing was implemented using CoarseDropout class. The region’s 

width and size were randomized from 30 to 40 pixels, and the number of regions created was 

randomized from two to ten patches. The proposed geometric transformations are shown in 

Figure 5.6.  
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Sample image 

 

Horizontal Flip 

 

Vertical Flip 

 
Rotation90 

 

Fine Rotate 

 

ShearX 

 
ShearY 

 

ShearXY 

 

Random Erasing 

 
Figure 5.6 Summary of the used geometric transformations. 

5.3.3 Pixel Transformation 
In airborne sensors, unknown perturbations of the sensor’s position relative to its expected 

trajectory can cause several defects such as radiometric distortions and image defocusing. To 

increase the model’s robustness when encountering these defects, noise injection methods were 

applied. The common Gaussian Noise was generated using the GaussNoise class, while 

Speckle Noise was amplified by multiplying each pixel with random values using the 

MultiplicativeNoise class. Some images suffered from defocusing due to an unpredicted change 

in the flight trajectory, causing fluctuations in the microwave path length between the sensor 

and the scene [143]. This defocusing effect was simulated by applying Motion Blur with 

random kernel size using the MotionBlur class. 

Sharpening with a high pass filter was used to improve edge detection. Consequently, this 

also increases other high-frequency components such as speckle. The histogram equalization 

was applied using Contrast Limited Adaptive Histogram Equalization (CLAHE) to maximize 
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contrast and improve edge visibility. The proposed pixel transformations are shown in Figure 

5.7. 

Sample image 

 

Gaussian Noise 

 

Speckle Noise 

 
Motion Blur 

 

Sharpening 

 

CLAHE 

 
Figure 5.7 Summary of the used pixel transformations. 

5.3.4 Speckle Filters 
Speckle reduction filters such as a Box filter can smooth the speckle using a local averaging 

window. This is effective in homogenous areas, but in applications requiring high-frequency 

information such as edges, filters that can adapt to local texture can better preserve information 

in heterogeneous areas [144]. A previous study [49] has shown a slight performance gain by 

applying low pass filters with varying strength on the UNet model. In this research, the use of 

well-known adaptive speckle filters was applied as a form of data augmentation, namely 

Enhanced Lee (eLee) filter, Frost filter, and Gamma Maximum A Posteriori (GMAP) filter.  

In Figure 5.8, two sample crops are shown for comparing filtration results. A good filter 

should retain the average mean of an image while reducing speckle [145]. In homogenous areas, 

the standard deviation should ideally be 0. Speckle filters were applied in MATLAB to the SAR 

intensity image (linear scale) and later converted back to the log intensity image (dB scale). The 

results of filtering are shown in Figure 5.8 (c) and (d). GMAP filter was measured to retain 

average value and reduce variance slightly better than eLee and Frost filter.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.8 A sample area in SpaceNet6 dataset [80] of a SAR log intensity (dB) image (a) 
with its equivalent optical RGB (b). Two distinct crop regions were analyzed: a building area 
(crop 1) and a homogenous water area (crop 2). The results of filtering with selected speckle 
filters and various kernel sizes are given in (c) and (d). The image in linear scale appeared 

dark because of the wide dynamic range. 

5.3.5 Data Augmentation Design and Strategy 
Previous subsections address the DA methods, while this subsection discusses how those 

methods were applied. The frequency of DA is controlled by setting a probability of 50% chance 

for an augmented sample to load instead of the original sample. The magnitude of the 

transformation was also randomized in a value range, increasing the variation in every iteration 

of training, except for flipping and quarter circle rotation, which had a limited set of 

transformations. 

The order of transformations is important when multiple augmentations are combined 

during the main experiment. Pixel transformations are applied first to prevent the presence of 

no-data pixels from affecting the results. Following it is a reduced transformation, and finally, 

a geometrical transformation. When using multiple pixel transformations, it is important to 

combine them into a “One Of” group. By chance, only one of the transformations will be 

applied, preventing the creation of a disastrous result. In geometric transformation, there is no 

Crop 1 

Crop 2 
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grouping, so an image has a chance to go through all transformations, which might increase no-

data pixels but are generally less harmful than multiple filtering operations. 

As categorized in [146], there are three stages of applying DA: Online (on-the-fly), Offline, 

and Test Time Augmentation (TTA). 

In Online DA, the input data is manipulated during training. This can lead to a bottleneck if 

a fast accelerator is used in training, but the augmentation algorithm is slow, leaving the 

accelerator mostly waiting for data. The advantage is that it does not store the inflated data in 

storage. On the other hand, Offline DA allows complex manipulation and will not bloat training 

time. However, since it is applied before training, it takes up storage, and the variations are pre-

determined (less randomness). Offline DA was used only for speckle filtered images since they 

were processed outside the TensorFlow environment, and an image was stored for every applied 

filter. Other transformations in this study used Online DA, which can have a finer degree of 

randomness in every iteration. 

In TTA, ܰ ் additional images are generated from each test image ݔ, where ܰ ் is the number 

of augmentations applied during the inference or prediction stage. The model will then predict 

on ்ܰ + 1 samples and the average sum will be taken as the final prediction. This method of 

predicting multiple transformed versions of the input mimics the theory of ensemble learning, 

where a group of models using different architectures or trained on different data combines their 

predictions to increase generalization. This was investigated in [147], concluding that TTA 

helped reduce overconfident incorrect predictions compared to when using only a single model. 

In a classification task, averaging predictions is straightforward since the output is an array 

with a size equal to the number of classes. In a segmentation task, one must be cautious to 

perform augmentations that modify the location of labels (in this dataset, the building 

footprints). If such methods are used, the solution is simply to revert back to the transformation 

before averaging the predictions. 

5.4 Results 
5.4.1 Ablation Study 

To measure the impact of each augmentation method, an isolated experiment was 

conducted. The model was trained on the mini-training dataset and evaluated on the mini-

validation dataset. Results are shown in Table 5.1. Loss and IoU are the scores for the training 

set, while Val Loss and Val IoU are scores from the validation dataset. The training lasted for 

60 epochs. The four metrics were taken at the best epoch, which is when the model obtained 
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the highest Val IoU. This demonstrates the best score for each augmentation method compared 

to taking the score on the last epoch, which was always the worst due to overfitting. As observed 

in Figure 5.9, the gap between training and validation scores was less when an augmentation 

method was used, which delayed overfitting, enabling the model to move into what is known 

as a Local Minimum or a temporary performance peak. 

 

Figure 5.9 IoU scores comparing the four reduce transformations. The solid lines show 
training IoU scores, while the dashed lines show Val IoU scores. The loosely dotted vertical 

lines show where the best epoch (highest Val IoU) for a given method. Adding more 
variations to the input delays the overfitting and is shown by a later best epoch. 

Using Random Crop Resize had the biggest performance gain compared to other 

augmentations. Randomizing the crop size gives the chance to see the image at different scales 

and details. Random Crop did not perform well due to the small static crop size of a 160 m × 

160 m area, increasing the chance of encountering partial parts of a building. 

Geometric transforms generally increased performance, except for Vertical Flip and 

Rotation90. Both were detrimental to the performance as they caused the extreme displacement 

of shadows and layovers’ location compared to the actual building footprint. Pixel transforms 

were not as effective, giving similar or slightly worse scores than the baseline. These 

augmentations affect the recognition of texture, an important feature when the edges of a 

building or its shape are unrecognizable due to occlusion or noise. However, this filtering can 

also be destructive as it also amplifies non-building patterns.  
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Table 5.1 Results of ablation study. All scores are in percentage units. For loss, the lower is 
better. For IoU, the higher the better. Scores are color-coded in comparison to Pad Resize, 

where green color projects positive gain while red projects negative gain. 

Method Loss Val Loss IoU Val IoU 

Reduce transformations 

Pad Resize 22.04 47.40 64.10 36.33 
Distorted Resize 26.35 46.57 58.56 36.95 

Random Crop 34.75 47.97 48.92 35.63 
Random Crop Resize 27.59 44.98 57.34 38.59 

Geometric transformations 

Horizontal Flip 27.35 46.04 57.58 37.84 
Vertical Flip 35.01 53.23 48.52 31.00 
Rotation90 45.43 58.10 37.90 27.15 

Fine Rotation [−10,10] 24.75 45.73 60.80 37.93 
ShearX [−10,10] 22.07 47.42 64.11 36.32 
ShearY [−10,10] 23.36 45.76 62.44 37.88 
Random Erasing 22.48 47.84 63.56 36.01 

Pixel transformations 

Motion Blur 25.79 48.10 59.45 35.88 
Sharpening 20.82 48.20 65.81 36.02 

CLAHE 31.20 48.36 52.69 35.53 
Gaussian Noise 31.67 46.99 52.67 36.66 
Speckle Noise 25.82 46.76 59.43 36.85 

Speckle Filter—eLee 23.94 49.43 61.61 34.56 
Speckle Filter—Frost 23.39 49.34 62.30 34.78 

Speckle Filter—GMAP 20.36 47.39 66.40 36.38 

 

Training scores were generally lower when augmentations were applied, as the model 

struggled to find the underlying function among the additional variations. A strong increase in 

training scores for the GMAP speckle filter indicates better recognition of the training data. 

However, these variations were not shown among the validation data, hence the lower 

validation scores. 

To further validate the effects of proposed data augmentations, an ablation study was also 

performed on various mini datasets described as follows: 

 SAR orient0, which had the north facing sensor, opposite orient1 (see Figure 5.1) 

 PAN, also from the same SpaceNet6 dataset but uses the single band panchromatic images 

instead of SAR 
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 Inria [129], a VHR optical RGB aerial imagery at 30 cm spatial resolution. To enforce the 

limited data configuration, only 15 images each from Austin and Chicago were used as the 

mini training dataset. As for the mini testing set, 10 images from Vienna were used. Each 

image was divided into 25 image tiles of 1000 × 1000 pixels. The RGB images were 

converted into grayscale for a fair comparison with the other single-channel mini datasets. 

Figure 5.10 shows that performance gain and loss on the other mini datasets mostly agree 

with results in SAR orient1. Random Crop Resize, Horizontal Flip, and Fine Rotation 

showed consistent gains over all datasets. Meanwhile, Rotation90 showed consistent dips in 

performance, which are more prominent in datasets from SpaceNet6. The result from PAN 

highlights the method’s impact on a similar geographic region (Rotterdam Port) but a different 

modality, while the result from Inria highlights the impact when exposed to the different urban 

settlements of multiple cities. However, due to the stochastic nature of deep neural networks, 

using an optimized model and training method fitted to one dataset might not translate to an 

optimal solution on another dataset, which has a different distribution [128]. Therefore, these 

directive insights should be further tweaked when working on a different dataset. 

 

Figure 5.10 Results of the Ablation Study compared with three other datasets. SAR orient0 
and PAN are from the same SpaceNet 6 dataset, while Inria is taken from the Inria Aerial 
Image Labeling dataset [129]. The IoU scores for the baseline method (Pad Resize) are 

marked with dotted horizontal lines for a straightforward comparison to other augmentation 
methods. 
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5.4.2 Main Experiment 
Based on conclusions from the ablation study, several combinations of positive 

augmentation methods were applied to the main training set and evaluated on the prepared 

validation set. A similar segmentation model and equivalent training parameters were used 

except for a longer duration of 90 epochs. Again, the highest Val IoU was selected as the best 

epoch. The following augmentation schemes were applied: 

 Baseline: No changes after applying a reduce transformation. 

 Light Pixel: Motion Blur, Sharpen, and Additive Gaussian Noise. 

 Light Geometry: Horizontal Flip, Fine Rotation [-10,10], ShearY [-10,10]. 

 Heavy Geometry: Horizontal Flip, Fine Rotation [-20,20], ShearX [-10,10], ShearY 

[−10,10], Random Erasing. 

 Combination: Light Pixel + Light Geometry. 

Only the Baseline experiment used Pad Resize as the reduce method, while the other 

combinations used Random Crop Resize. For every augmentation scheme, the model’s 

performance was taken at the best epoch and shown in Table 5.2. Due to different datasets, the 

scores in Table 5.1 should not be directly compared to results from this main experiment. 

Table 5.2 Results of combining multiple augmentations. All Loss and IoU scores are in 
percentage. For Loss, lower is better. For IoU, higher is better. Scores are color-coded where a 

darker green indicates a better value. 

Augmentation Scheme Loss Val Loss IoU Val IoU Best Epoch 

Baseline 17.94 44.54 69.82 42.13 47 
Light Pixel 23.47 44.57 62.28 42.72 81 

Light Geometry 28.24 39.85 56.24 47.25 60 
Heavy Geometry 28.90 41.02 55.46 46.12 67 

Combination 29.04 41.27 55.36 46.05 74 

 

In line with the results from the ablation study, geometric transformations had better scores 

than pixel transformations. Increasing the magnitude of transformation did not lead to an 

increase in performance, as shown by the lower scores obtained in Heavy Geometry. Increasing 

the diversity of transformations in Combination also did not improve performance despite 

consisting of transformations that showed positive impacts during the ablation study. 

All models predicted well on medium-height elongated residential buildings (Figure 5.11a). 

Applying augmentation increases confidence, modeling a more accurate shape characterized by 
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rooftop patterns. However, fine details of the building structure and small buildings remained 

undetected. 

For an image tile of large negative samples (pixels belonging to non-building), pixel 

augmentations drive extra attention to high backscattering objects such as container storages 

and large shipping/port equipment made of metal (Figure 5.11b, 4th row). This leads to an 

increase in false positives. Geometric augmentations were less prone to this. However, 

Geometric augmentations overfit non-building objects with building-shaped backscatters, such 

as the fences surrounding a sports field (Figure 5.11c, 5th row). A combination of geometric 

and pixel augmentations seems to tune down these false positives and correctly recognize them 

as non-object patterns. 

 

Figure 5.11 Comparison of predictions from the trained models of different scene objects: (a) 
medium-height residential buildings, (b) containers in a shipping port, (c) outdoor sports field, 

and (d) high-rise buildings. 
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Occlusion was the biggest problem, especially related to high-rise buildings in dense areas 

(Figure 5.11d). All models failed to recognize buildings occluded by the overlay of a 

neighboring high-rise building. Interestingly Geometric augmentations tend to classify the 

overlaid parts as positives. 

5.4.3 Test-Time Augmentation 
The state of the models in the main experiment was saved at their best epoch, and TTA was 

applied after the training ended. Two experiments were applied using TTA: 

 TTA_1: Pad Resize was used for reducing image resolution. Transformations include 

Horizontal Flip, Rotate {−10°, 10°} and ShearY {−10°, 10°}. After predicting each sample 

variation, an inverse transformation was applied, and the average sum was used as the final 

prediction. Total predictions per test sample: six. 

 TTA_2: The rectangle image tile was divided into two square patches with some 

overlapping in the middle. This slightly increased the detail by utilizing the whole image 

space and removing the black bars. Afterward, TTA_1 was performed on each tile. Finally, 

the two prediction patches were combined by averaging the pixel values in the overlapping 

region. Total predictions per test sample: 12. 

TTA was applied to the Baseline model and best model from the main experiment, which 

was trained on the Light Geometry scheme. TTA comes at the cost of additional inference time 

௧௦௧ݐ , which is a scaling factor compared to the Baseline’s inference time. It increases 

proportionally to the number of augmentations applied, e.g. for TTA_1 scheme with 6 methods, 

௧௦௧ݐ  grew to 3.3 times the baseline inference and grew to 6.3 times for TTA_2 with 12 methods.. 

Compared to the time required by re-training a model, the additional inference time to 

implement TTA was negligible. Results for TTA are shown in Table 5.3. 

Table 5.3 Results of applying TTA to the Baseline model and Light Geometry. All loss and 
IoU scores are in percentage. For loss, lower is better. For IoU, higher is better. Scores are 

color-coded where a darker green indicates a better value. 

TTA Scheme Val Loss Val IoU ࢚࢙ࢋ࢚࢚ 
Baseline 44.54 42.13 1.00 

Baseline + TTA_1 41.79 44.65 3.35 
Baseline + TTA_2 48.01 38.25 6.37 

Light Geometry + TTA_1 39.05 47.90 3.39 
Light Geometry + TTA_2 37.11 49.69 6.39 
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The Baseline and Light Geometry model benefits from TTA_1, which consists of simple 

geometric transformations. Interestingly, when TTA_2 was applied to the Baseline model, the 

performance was lower, as it predicted fewer positive samples from the two square patches. 

The Baseline model, trained on images with a fixed scale, had less confidence in predicting 

medium-sized buildings compared to the Light Geometry model, which had the chance to see 

variations of scaling thanks to the Random Crop Resize reduction method. 

5.5 Discussion 
SAR images have unique properties that differ from optical images. Therefore, several 

transformations, as shown in the ablation study, can result in poor performance. Selecting 

augmentation methods requires knowledge of the biases in the training data, either through 

statistical analysis, in the case of a large dataset, or through the manual inspection of samples. 

This helps reduce the search space instead of trying every available method. 

Tiling is required in remote sensing images as it is impossible to fit a large raster directly to 

a model. The choice of target resolution will affect the detection of multi-scale objects, such as 

buildings. Introducing randomness by varying the scale and crop size during dataset loading is 

a cheap way of boosting performance since there is no need to store extra images, as in the case 

of tiling with overlapping regions. However, cropping too much will increase the chance of a 

large object covering the whole space and hinder performance. No-data regions are inevitable 

when tiling a large raster, and in the author’s experience, it is better to remove them before 

feeding the image tile to the model. 

This study shows that pixel transformations are not as effective as geometric 

transformations. The reason might be that kernel filters, which are the base of most pixel 

transformations, are already an integral component of the CNN model itself, thus, learnable by 

an adequately sized model. 

TTA was demonstrated to be a cheap method to boost test scores. However, applying a set 

of augmentations during the test did not achieve better scores when compared to applying the 

same set of augmentations during training. The model predicted the varying test samples better, 

had it seen these variations during training. Therefore, applying augmentations in both stages 

will result in better scores. When using shear and fine rotations in TTA, the angle must be kept 

low because it removes some portion of the image (outside the image boundary) where it will 

not return when doing the inverse transformation after prediction. This is why quarter-circle 
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rotations and flips are more commonly used as TTA because they retain the full image after 

inverse transformation 

5.6 Conclusion 
This chapter presents several data augmentation methods for semantic segmentation of 

building footprints in SAR imagery. By artificially increasing the training dataset, the model’s 

generalization on unseen samples was improved in the validation set, thereby reducing 

overfitting. The results show a 5% increase in Val IoU score when comparing the best 

augmentation scheme to the baseline model (no augmentation). Data augmentation can be very 

helpful in situations with limited data, either due to proprietary licenses or an expensive 

collection process.  

For building detection in SAR, geometric transformations were more effective than pixel 

transformations. However, some transformations (such as vertical flip and quarter circle 

rotations) that alter key features of a building in SAR images were proven to be detrimental. 

Therefore, data augmentation must not be overused, especially since it takes more resources to 

train (either storage or processing time), which does not always lead to a better result. 

Additionally, TTA showed further performance gain compared to augmentations applied only 

during training. Thus, it can be concluded that the first thesis of the dissertation has been 

confirmed. 
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6 Detecting Large Scale Event from SAR Time Series 

6.1 Introduction 
Change Detection (CD) is a vital task in remote sensing analysis. One of its useful aspects 

is disaster assessment where SAR is more suitable than optical images, as it can observe an area 

even in bad weather conditions, which typically follows a disaster. 

CD generally involves generating a difference image ܫܦ and then classifying change from 

it. For the first step, the log ratio operator is commonly used to highlight changes from pairs of 

bitemporal SAR images [148] which also lowers the impact of speckle noise [149]. Another 

approach to generating DI is based on similarities of statistical distribution between 

multitemporal SAR images, such as the Kullback-Leibler divergence [150] and the complex 

Wishart distribution for full polarimetric SAR [151]. For the classification step, the change 

classes can be determined using thresholding [152], or clustering [153].  

With increasing amounts of remote sensing data, conventional algorithms started to be 

replaced by data-driven models such as neural networks. Complex pre-processing steps from 

conventional methods are difficult to scale and usually involve semi-automated analysis [154]. 

It is a well-known fact that neural nets perform better with larger data samples [155]. However, 

in the topics of remote sensing, it is challenging to generate labels to train detection algorithms, 

especially in SAR, due to unintuitive visual properties that are unique in radar images [15]. 

Recent research directions are slowly adopting unsupervised learning methods which minimize 

or even remove the need for labels for training [156]. 

Autoencoders are used to learn efficient encodings by reconstructing the input data without 

requiring labels [157]. Stack autoencoders were used as pre-text tasks in [158], and fine-tuned 

for detecting changes caused by wildfires. The reconstruction loss of an autoencoder can be 

used to determine the degree of change, by training an autoencoder only on no-change samples 

and assuming that changed samples cannot be reconstructed as good [159]. 

In this chapter, an autoencoder was trained to reconstruct multitemporal SAR data from 

ESA’s Sentinel-1. The goal is to detect large event changes caused by various types of natural 

disasters. Therefore, higher temporal resolution (meaning a shorter gap between acquisition of 

the same area) is preferable to spatial resolution (which can induce unnecessary details). The 

autoencoder was used to learn representations of SAR data leading to a flood event. It was then 
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used to predict changes from other disaster types by taking the distance of encodings in the 

embedding space between bitemporal pairs of images as a measure of change. 

6.2 Dataset 
The inspiration for the data collection method was from the WorldFloods dataset [160]. It is 

a publicly available collection of satellite imagery of historical flood events from several 

existing databases in “machine-learning ready form”. One of the databases where the flood 

extent map was derived is CEMS [161], which provides a catalog of emergency responses in 

relation to different types of disasters. The rapid mapping products have an event-specific 

vector package which was mostly derived either through manual photo-interpretation or semi-

automatic extraction. This vector data is used as a reference for observed changes. 

6.2.1 Flood Training Dataset 
The multitemporal SAR data was collected over the Area of Interest (AOI) attached in the 

vector package. To programmatically search and collect SAR data, the Google Earth Engine 

[162] was used to access Sentinel-1 data. This approach allows the scaling of data collection 

process to potentially improve or better assess the algorithm. The Ground Range Detected 

(GRD) images were already pre-processed and georeferenced. Each pixel represents the 

backscatter (ߪ) in the logarithmic scale. The Interferometric Wide (IW) swath mode was used 

which has the default spatial resolution of 10 m. The polarization mode is in VH and VV. To 

reduce unnecessary changes from different viewing directions, the descending orbit was 

chosen. Additionally, for each location, a similar orbit pass number was chosen for all temporal 

images. 

The temporal resolution or revisit time of Sentinel-1 is twelve days. With two Sentinel-1 

satellites in orbit, a six-day revisit can be achieved, and some locations near the poles can even 

have up to a three-day revisit. Natural changes can be short (e.g. vegetation growth, sea waves), 

multiple days (e.g. floods, hurricanes), multiple weeks (e.g. wildfires, ice/glacier movement), 

or cause long-term landscape change (caused by e.g. landslides or earthquakes). The revisit 

time for Sentinel-1 (three to six days) is adequate to detect the disaster events in this study, 

which consist of floods, wildfires, and landslides.  

For studies using optical images such as Sentinel-2 multispectral data [160], [163], 

permanent water areas were considered as floods since the overflow water from rivers or lakes 

is the common cause of fluvial floods [164]. From optical imagery, a change of color to brown 

is commonly observed in these water bodies due to the carrying of sediments from nearby land. 
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However, it is not possible to observe such changes in SAR as all water bodies still have low 

backscatters due to specular reflection. Therefore, only the observed event labels were 

considered as floods. 

6.2.2 General Event Evaluation Dataset 
The goal is to test if the change detection algorithm that was trained to detect flood events 

can generalize to other large-scale natural events in different locations. This set will be used to 

evaluate the model’s performance, consisting of three types of large-scale events: floods, 

wildfires, and landslides. Each event has two locations. The dataset for testing was sampled 

from [7], consisting of multitemporal Sentinel-2 images. Similarly, with the flood dataset, the 

metadata was used to collect Sentinel-1 images over the same location and roughly similar 

timeframes. Table 6.1 shows the metadata of all locations used in this study. 

Table 6.1 Metadata for the flood training dataset and the general-event evaluation dataset. For 
reference labels from CEMS, the identifier uses the code EMSR or EMSN, while others use 

reference labels obtained from the validation set in [7]. 

Location Event 
identifier 

Ref date Sentinel-1 Post 
date (ࢄ) 

Event Area 
(km2) 

Training data 
France EMSR 265 2018-01-25 2018-01-25 Riverine flood 887.9 
Albania EMSR 273 2018-03-22 2018-03-23 Riverine flood 202.8 

Madagascar EMSR 274 2018-03-18 2018-03-20 Flood by storm 48.2 
Spain EMSR 279 2018-04-15 2018-04-18 Riverine flood 2109.3 
Italy EMSR 330 2018-10-19 2018-10-23 Flash flood 244.8 

Validation data 
USA Carr Fire 2018-07-23 2018-08-17 Wildfire 1469.9 

Australia Riveaux Road 
Fire 

2018-12-28 2019-02-27 Wildfire 1008.9 

Greece EMSR 271 2018-02-28 2018-03-01 Flood 586.6 
France EMSR 324 2018-10-16 2018-10-17 Flood 403.1 
Iceland Fagraskógarfjall 

landslide 
2018-07-07 2018-07-09 Landslide 26.0 

Chile EMSN 053 2018-12-16 2017-12-24 Landslide 39.4 
 

6.2.3 Notation 
The reference labels have a binary class of 0 as no change, and 1 as change. For each event 

location, three pre-event images and a single post-event image were collected as close as 

possible to the reference date of the event. The temporal data is denoted as ܺ௧, where ܺ is an 
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image of a location, ݐ is the temporal index where ݐ ∈ {0,1,2} is the pre-event images and ݐ =

3 indicates the post-event image. 

Figure 6.1 shows all timeframes for the location Albania, mapped to a false color of R=VH, 

G=VV, B=VV, for visualization purposes. The VV channel exhibits stronger backscatter for 

man-made structures (such as buildings and bridges), and for certain crop types that are 

sensitive to the double bounce scattering mechanism [165]. These features are highlighted in 

cyan in the false color composite. Meanwhile, most vegetation and agriculture areas are 

sensitive to the cross-polarization VH backscatter due to multiple scattering between branches 

and volume scattering. These features are highlighted in red. In both VV and VH, open waters 

have low backscatter due to specular reflection, therefore appearing as black. 

 

Figure 6.1 Multitemporal images from the flood in Albania. The reference flood label mask 
from the CEMS database: EMSR 273, highlights the flood that happened between ܺଶ and ܺଷ. 

The red color in the flood mask indicates the observed flood extent, while the blue color 
indicates permanent water such as lakes and rivers. Only the flood extent was used as the 

reference. Below each image is the date of acquisition. 

6.2.4 Preprocessing 
It is not feasible to directly feed a large resolution image through a deep neural network. 

Handling varying aspect ratio input is also a challenge in the model’s design, as the layer 

configurations need to be initiated. The common practice in remote sensing applications is to 

divide the image into smaller tiles (sometimes called chips or patches). This way, the input is a 

reasonable size image with a consistent shape. The tile size of 32 by 32 pixels was selected to 

crop input images. For every location in the training data, the full SAR image ܺ௧, is divided 

into tiles ݔ௧
, where ݎ and ܿ denotes the row and column index of the tile. 

The mean and standard deviation for the training data were calculated and used to normalize 

samples before feeding to the neural network. The data distribution of log intensity SAR images 
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is typically already a normal distribution [21]. Therefore, normalization transforms them into a 

standard normal distribution with decorrelated features, which was empirically proven to help 

training [166]. The preprocessing for both the flood dataset and general event dataset was 

similar. 

6.3 Methodology 
Remote sensing data is commonly used for detecting changes on Earth. Certain sensors are 

more sensitive to certain physical changes, which will be reflected by changes in radiance or 

backscatter value in the recorded image. Change detection (CD) attempts to compare images of 

the same location taken at different times. The simplest CD model would be to subtract two 

images represented by an ܰ-dimensional vector ܺఛ  and १ܺ
 taken at time ߬ and time १, to obtain 

a difference image ܫܦఛ,௧
 , where ݅ ∈ 1, … ,ܰ, is the spatial index. A threshold ࣮ is then used to 

determine how much of an intensity difference represents “change”. Typically, ࣮ is expressed 

in terms of standard deviations away from the mean difference value, indicating “no change” 

when the difference is closer to the mean [167]. 

However, this simple model is not practically useful as the desired “change” is hard to 

define. Therefore, attempts should be made to transform pixel intensity values to make 

interesting changes more prominent and mitigate uninteresting changes. In SAR, natural 

changes such as vegetation growth, and the presence of speckle, can be challenging to develop 

change detection algorithms. 

6.3.1 Autoencoders 
Autoencoders are neural networks that are designed to indirectly copy its input to its output. 

Traditionally, it was used for dimensionality reduction or feature learning. Autoencoders consist 

of two parts: an encoder and a decoder. The encoder ℰ creates a hidden representation (also 

called the latent space) ݖ by an affine mapping of the input ݔ given by ݖ =  The decoder .(ݔ)݂

ࣞ maps the hidden representation ݖ back to the original input space to generate the 

reconstruction of ݔ given by ݔො =  .(ݖ)݃

During training, the reconstruction loss ℒ(ݔ,ݔො) will be minimized, which measures the 

difference between the input and the reconstructed input. Using regularization methods such as 

sparsity, training to find a denoising function, or penalizing derivatives [34], the autoencoder is 

restricted from copying the exact values from ݔ, therefore, forcing it to learn meaningful 

properties of the input data. Autoencoders are trained with the bias-variance tradeoff in mind. 

On one hand, one would want the autoencoder to be able to reconstruct the input by reducing 
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the reconstruction error. On the other hand, one would want the learned low representation to 

be able to generalize [168]. In other words, the goal is not to obtain the best reconstruction ݔො, 

but rather how good are the representations learned in the form of ݖ. See Figure 6.2 for the 

training pipeline. 

A small autoencoder was used consisting of three convolution layers with kernel size 3 and 

stride size 2. The encoder compresses the input spatial size by half while increasing the depth 

of features. It outputs an embedding vector of size 128. The decoder expands the embeddings 

back to the input’s original shape using upsampling layers. 

6.3.2 Training 
During training, the input tile ݔ௧

,  was reconstructed by the autoencoder to output ݔො௧
, and 

the weights of the network are updated based on the reconstruction loss. A low learning rate of 

4 × 10ିହ was used with a step decaying scheduler. Training was performed on an RTX A4000 

GPU with a batch size of 256 for 20 epochs. 

 

Figure 6.2 Schematic of the autoencoder during training. 

6.3.3 Evaluation 
During the evaluation, only the encoder was used. Each input tile ݔ௧

,  was encoded into 

௧ݖ
, ∈ ܴௗ where ݀ is the size of the embedding vector. Embeddings from adjacent timeframes 

were used to generate the difference tile ݀ݐఛ,௧ = ܵ(ݖఛ
, , ௧ݖ

,) where ߬ = ݐ − 1 and ܵ  is the 

cosine similarity. The assumption is that as ݀ݐ increases, there should be a greater magnitude 

of change occurring between the timeframes [18], [169]. The difference tiles ݀ݐఛ,௧
,will be 

rejoined back based on their row and column position to create a difference image ܫܦఛ,௧. See 

Figure 6.3 for the schematics.  

A threshold value is further needed to binarize ݀  .and assign the label Change or No Change ݐ

For pre-event pairs, the False Positive Rate (FPR) was used to measure the probability of false 

detection, i.e. the negative labels that were predicted as positives. The reference change labels 



85 
 

were only available for the last pair (co-event), therefore, the reference labels for pre-event pairs 

were all assigned as negative labels since it is assumed that no meaningful changes appeared 

before the event. 

For the co-event pair (between ݐ = 2 and ݐ = 3), recall was used to measure the probability 

of detection. Selecting a threshold can create trade-offs between false positives (lowering 

threshold classifies more items as positive) and false negatives (vice-versa). The Precision 

Recall Curve (PRC) shows this trade-off for different threshold values. The Area Under the 

Precision Recall Curve (AUPRC) is a useful metric to aggregate the performance across those 

different thresholds. The score ranges between 0 to 1.       

 
(a) (b) 

Figure 6.3 (a) Schematic of autoencoder during inference. (b) Illustration of AUC of PRC 
over different thresholds ࣮. 

6.4 Results 
6.4.1 Reconstructing Flood Events 

The autoencoder was trained on five flood locations each with four temporal SAR images. 

Training aims to minimize the reconstruction loss which is the Mean Squared Error (MSE). 

Figure 6.4 shows the comparison between the input and its reconstruction from one of the flood 

locations. The reconstructed tiles show a less detailed and slightly blurrier version of the 

original, also with visible texture discontinuation along the edges of the 32 by 32 tiles. 
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Figure 6.4 A crop from the flood location in Italy. The optical images from Sentinel-2 are 
shown for comparison. 

6.4.2 Predicting on Other Events 
The trained model was evaluated on six locations of three different types of events, utilizing 

the difference between encoded features from bitemporal tile pairs to measure the degree of 

change. The difference image ܫܦఛ,௧ shows a probability map between 0.0 and 1.0 based on the 

normalized cosine similarity. To assign a label class, a threshold ࣮ is needed to split the 

probability map. As with any binary classification problem, assigning the value of ࣮ is a 

compromise between objectives. The effects of different ࣮ are shown in Table 6.2. Higher ࣮ 

reduces the number of predicted positive classes, therefore having fewer false positives as 

shown by the lower mean False Positive Rate (mFPR), but as a trade-off, it has poor change 

detection ability as shown by the low mean recall (mRec). Meanwhile, reducing ࣮ increases 

the predicted positive classes, leading to better detection ability, but as a consequence, the 

number of false positives also increases. The AUPRC score summarizes the performance over 

a range of threshold values, therefore, being a single metric to judge the model’s skill. 

A full prediction from one of the landslide locations is shown in Figure 6.5a. Visible from 

the difference image between frames 1 and 2, ܫܦଵଶ, that surrounding vegetation impacts a lot 

of false detection from the pre-event pair, which ideally should be mostly dark similar to ܫܦଵ. 
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Table 6.2 Metrics averaged across all 6 locations of the evaluation set. The subscript numbers 
denote the SAR temporal pairs. 

ञ 
Pre-event pairs Co-event pair 

 ܋܍ܚ۾ܕ ܋܍܀ܕ ܀۾۴ܕ ܀۾۴ܕ ܀۾۴ܕ

0.15 0.0023 0.0043 0.0281 0.0359 0.4729 
0.1 0.0278 0.0437 0.0636 0.0600 0.3988 

0.07 0.0757 0.1210 0.1286 0.0983 0.3494 
0.05 0.1359 0.2018 0.2130 0.1713 0.3610 
0.03 0.3051 0.4337 0.4781 0.4175 0.3802 

0.01 0.8669 0.8879 0.9323 0.9149 0.4081 
 

One location for each event and its predicted ܫܦ is shown in Figure 6.5b. Each event type 

shows a different kind of change in the SAR intensity image. Flood changes are depicted by 

dark pixels from the specular scattering due to surface water. Despite training from images of 

floods, the evaluation for floods was poorer than other events. This was due to a high number 

of false positives in surrounding agricultural areas, which most likely have a drop in backscatter 

due to increased moisture after heavy rains [170]. 

For wildfires, the burnt areas have lower backscatter in both VH and VV channels [171]. 

However, in this wildfire area, the drop was not consistent throughout the whole labeled burnt 

area. Some parts had more decreases than others. The burnt area from wildfires in radar images 

does not show as clearly as in optical images. Despite this, AUPRC for wildfires shown in Table 

6.3 are very good (> 0.73) as the predicted changes are well within the reference burnt areas. 
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(a) (b) 

Figure 6.5 Before and after SAR images and their change detection results from 3 different 
event types. 

Finally, for landslides, the effect of land movement results in a prominent change of 

backscatter from the partial or total removal or modification of vegetation, which displays clear 

boundaries from unaffected areas. Landslides obtained one of the highest AUPRC scores. 
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Table 6.3 Change detection evaluation based on the AUPRC metric between last pair 
prediction with the ground truth label. 

Location Event AUPRC ञ࢚ 

USA Wildfire 0.7342 0.0160 
Australia Wildfire 0.7505 0.0321 

Greece Flood 0.6856 0.2435 
France Flood 0.4193 0.1622 
Iceland Landslide 0.7996 0.1043 

Chile Landslide 0.6757 0.0468 
All locations 0.3968 0.3971 

 

Interestingly, AUPRC scores for all locations shown in Table 6.3 were much lower (0.39) 

compared to scores for individual locations. AUPRC summarizes performance over multiple 

thresholds, however, the pixel distribution of ܫܦ for each event can vary. When calculated, the 

optimal threshold value for each event type was different, for example, lower than 0.05 for 

wildfires, and between 0.15 and 0.25 for floods. This poses a challenge for a single classifier to 

generalize on detecting change for different events. Other than the distinct appearance of 

changes, the pixel distribution of backscatter values could also affect this threshold difference. 

6.5 Discussion 
From extensive experiments carried out in this chapter, the challenges in using simple 

autoencoders for change detection are mainly two things. First is the disconnection between the 

goals of training and inference. The former aims to minimize the reconstruction loss, while the 

latter aims to improve the classification accuracy of detecting change. This leads to difficulties 

in hyperparameter tuning during training, since it’s not clear when to stop the training. The 

second challenge is the noise produced by natural changes in the SAR scene which were unique 

for different disaster types. This affects negative detection rate, i.e. predicting from pre-event 

pairs of images as no change. Manually setting ࣮௧ in post-processing was still necessary to 

obtain good performance. It was observed that the larger the scene, the more frequent noisy 

changes appear. Reducing the AOI to be as close as possible to the event of change will result 

in a better performance score, as observed in several scenes considering their total areas. 

However, this would defeat the purpose of developing large-scale event detection and an end-

to-end manner is more desirable.  
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6.6 Conclusion 
In this section, an unsupervised approach was proposed to detect general large event changes 

from multitemporal SAR images. A scalable workflow has been proposed for utilizing a public 

database of disaster events as search parameters for collecting SAR images. The autoencoder 

was trained to reconstruct pre-event SAR images and learn the underlying representations. The 

trained autoencoder was used to detect changes from bitemporal SAR pairs by computing the 

distance between their embeddings.  

Detection results were observed to be sensitive to threshold values, which were used to 

binarize the difference image ܫܦ to Change or No Change classes. The distinct surrounding 

areas and unique characteristics of change from each event type resulted in different 

distributions in ܫܦ prompting the need for post-processing tuning. However, when using 

optimal threshold values, the model can detect changes from wildfire and landslide events with 

the best AUPRC of 0.79, despite only being trained on flood events. Thus, it can be concluded 

that the second thesis of the dissertation has been confirmed. 

As discussed, the model is still sensitive to the noise from natural changes, which gets worse 

the larger the scene is. In future work, to improve the robustness of an end-to-end approach, a 

multi-scale prediction method can be used where a large SAR scene is split into large patches, 

determine areas with high probability of change, and finally split that patch into even smaller 

patches for finer localization. 
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7 SAR Imagery for Urban Density Analysis 

7.1 Introduction 
Assessing the compactness of a city's structure and analyzing the density of buildings is 

very important in the context of the city's morphology and urban compactness [172] [173]. The 

elements of a compact city can be understood as the physical presence of gray infrastructure 

objects and thus proportion of non-permeable surfaces. This includes built-up areas, traffic 

routes, industrial areas, or other areas covered with artificial materials.  

Frequent and cyclical analysis of infrastructure information is critical to capture dynamic 

changes in urban areas. Such work on global products is undertaken within ESA’s Copernicus 

program on a continental scale using remote sensing data obtained from Sentinel-2 [174], [175]. 

However, there are no methods of analyzing and developing data for cities on detailed scales, 

where it is also important to distinguish classes in terms of building density, as in the Urban 

Atlas (UA) database [176]. The available and widely used satellite optical images, although 

intuitive, have their limitations. Radar images, which are more difficult to interpret, require 

additional processing and appropriate software, but it records information different from optical 

images that can help distinguish between land cover classes in urban areas. Moreover, the active 

radar sensor is independent of sunlight and can penetrate through clouds, ensuring constant 

observation and more frequent updates. 

Urban mapping can benefit from radar images since built-up structures induce strong 

backscatter and thus can be distinguished well on microwave imagery [12]. The different 

scattering mechanisms of anthropogenic objects - buildings, concrete structures, roads, squares, 

or other impermeable surfaces - makes these surfaces identifiable and distinguishable in terms 

of the scattering factor.  

There have been many studies of LULC classification using PolSAR data. However, such 

imaging mode is not commonly available in most satellite operations due to the limited swath 

width and huge data volume [177]. Single-polarized SAR data are more commonly available 

and with better spatial resolution. However, there is not enough information in single-polarized 

data to extract physical scattering mechanisms. To compensate, speckle divergence and texture 

analysis can be derived from the radar intensity data. Speckle divergence was used in [178] and 

[179] to monitor built-up areas, while other studies used SAR texture analysis to improve the 

classification of land cover mapping [180], building footprint extraction [181], and change 
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detection [182]. In the case of the dual polarization C-band, the coherence matrix and the 

modified dual polarimetric decomposition proposed in [183] can be used for various analyses 

as demonstrated in [184], [185], [186].  

Preliminary results from a previous study show the possibility of using textural features to 

distinguish building classes in terms of compactness and that sealed areas of different densities 

are better classified on radar than optical images [187]. In this research, the more commonly 

available single polarization and dual polarization SAR were used to distinguish land use and 

land cover classes from the UA database with an emphasis on urban density. A comparison 

between an unsupervised clustering algorithm and a supervised segmentation approach was 

explored on various features derived from the SAR data. 

The main objectives of this study are the following: 

 Provide a comparison of the single polarization X-band and dual polarization C-band SAR 

data for LULC classification in urban areas. Features derived from the radar intensity data 

such as texture and speckle divergence were used as input. 

 Assess the limitations of these SAR features in relation to the UA dataset used as reference 

labels. 

7.2 Dataset 
7.2.1 Study area and SAR data 

Cities with diverse topographical structures and various residential, commercial, and 

industrial buildings are selected as the study areas: Warsaw and London. To analyze and 

compare them effectively, fragments of these cities with various types of urban fabric were 

selected as the AOI for the study as shown in Figure 7.1. 
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Figure 7.1 The study areas: London, UK (left) and Warsaw, PL (right). The blue polygon 

denotes the training area, while the pink polygon is for evaluation. The size of the training and 
evaluation area for London are 188 km2 and 65 km2 respectively, while for Warsaw, they are 
202 km2 and 65 km2 respectively. SAR images by ICEYE [8] and basemap from Bing Maps 

Satellite Imagery [28]. 

For comparative studies, images from different sensors are needed to ensure a variety of 

data across a range of polarization (single and dual) and wavelengths (X and C-band). ICEYE 

(VV in 9.65 GHz) and Sentinel-1 (VV and VH in 5.4 GHz) are the datasets that ensure the 

feasibility of the experiment and test the influence of different factors on the results. The dates 

of the images were selected to be close to each other and cover the period without vegetation 

(Table 7.1). For images from ICEYE, The SpotLight Extended Area (SLEA) and Strip Map 

(SM) modes were used to capture the London and Warsaw areas respectively, while both scenes 

were acquired using the Interferometric Wide (IW) mode on Sentinel-1. Table 7.1 describes the 

data properties. 

Table 7.1. SAR product specifications used in the study. 

Parameters London Warsaw 
Imaging Mode ICEYE SLEA Sentinel-1 IW ICEYE SM Sentinel-1 IW 

Band (frequency GHz) X (9.6) C (5.4) X (9.6) C (5.4) 
Input format GRD GRD GRD GRD 
Polarization VV VV, VH VV VV, VH 

Orbit Ascending Descending Descending Descending 
Look side Right Right Right Right 

Ground resolution (m) 0.5 x 0.5 10.0 x 10.0 2.5 x 2.5 10.0 x 10.0 
Date 2021-12-20 2021-12-18 2019-09-18 2019-09-19 

Area (km2) 253  253 267 267 
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7.2.2 Labels and urban density definition 
To train and evaluate the models, the 2018 version of UA dataset of London and Warsaw 

was used [188]. It is the latest vector data consisting of LULC labels of various functional urban 

areas over European cities. The 27 LULC categories were aggregated into 6 categories with an 

emphasis on distinguishing dense urban areas. Table 7.2 shows the class distribution for each 

AOI. Some areas within the SAR coverage had no UA labels, these are categorized as NoData, 

which will be ignored in training and evaluation. An example of UA aggregated classes is shown 

in Figure 7.2. It is a snippet of the London study area featuring the Thames River and 

surrounding low-rise suburban houses. Large parks with small ponds are visible in the bottom 

left corner and on the top corners. Several industrial areas are shown in gray, which are mostly 

warehouses, shopping malls, and academies. 

   
Figure 7.2 A snippet from the scene in London for comparing SAR features. Left: optical 

image from Bing Maps Satellite Imagery [28]. Right: corresponding UA labels [188]. 

Table 7.2. Class distribution of UA labels for both areas of interest 

Class ID Class Names London (%) Warsaw (%) 
0 Background (NoData) 3.22 2.08 
1 High density urban area 26.40 33.62 
2 Medium density urban area 6.95 0.42 
3 Road and railways network 7.49 10.72 
4 Industrial area 17.24 19.08 
5 Vegetation 33.31 31.64 
6 Water 5.38 2.44 

 

7.2.3 SAR features 
To support the classification of land classes with reference to UA labels, several image 

features were extracted from each SAR data. Images from Sentinel-1 have dual polarization, 
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VV and VH. VV is also called co-polar, since it relates the same polarization for the incident 

and the scattered fields, whereas VH is called cross-polar since it relates to orthogonal 

polarization states. Sentinel-1 has image features for each polarization. 

The following figures in this section visualize the SAR features in a grayscale colormap in 

the first row. The second row is their class likelihood distribution (ࣹ|ࣷ) which plots the 

probability density function for each class ࣷ in the given SAR feature ࣹ. 

7.2.3.1 Log-Intensity 

SAR intensity represents the reflected echo from scatterers on the ground. From Figure 7.3 

it can be seen the additional detail in the urban scenes from the X-band SAR image compared 

to the C-band, where edges representing road lines and building blocks are visible in the former. 

X-band Log-Intensity – VV 

 

C-band Log-Intensity – VV 

 

C-band Log-Intensity – VH 

 

   
Figure 7.3 SAR intensity in logarithmic scale. 

The class likelihood histogram for the log-intensity of X-band shows overlaps between 

classes. This indicates the difficulty in differentiating between the UA classes within this SAR 

feature. For the C-band log-intensity, the class Water is better distinguished than the other 

classes, occupying a low response in both VV and VH channels. The Water class has almost a 

bimodal distribution due to the difference in intensity between ponds and lakes compared to the 

river. Other classes for both polarizations still have significant overlaps. Several building areas 

appear brighter in VV, most likely due to their orientation relative to the sensor. Buildings that 

are oriented in a different direction than perpendicular can be mapped weaker due to the 

reflection from its walls. Backscattering also depends on the type of building – in the case of 
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residential buildings, the value of recorded reflected radiation is the lowest, it is higher for 

commercial areas and the highest for industrial [189]. 

7.2.3.2 GLCM 

The detailed structure of ground objects can be effectively reflected in texture information. 

Buildings with a regular arrangement and shape show notable texture features in an image 

[181]. There are many different methods for texture analysis, e.g., Gray-Level Co-occurrence 

Matrix (GLCM), fractal analysis, discrete wavelet transforms, Laplace filters, Markov random 

fields, or granulometric analysis. In this research, texture features are extracted using GLCM 

based on the log intensity SAR image. Texture images derived by GLCM are the result of 

second-order calculations, meaning they consider the relationship between reference and 

adjacent pixels. Individual fragments of land cover were shown to have a higher correlation 

within their boundaries than between neighboring objects [190]. For a comprehensive review 

of statistical algorithms and mathematical formulations of GLCM, one can refer to Haralick 

[191] and Hall-Beyer [190]. 

Five texture features were derived: energy, correlation, homogeneity, contrast, and variance 

using a 9x9 window. GLCM - Homogeneity is shown in Figure 7.4 where similar-like pixels 

have high value such as water areas, while heterogeneous patterns such as buildings and 

infrastructure have low value. In X-band, the High density class (colored in red) occupies lower 

values, indicating the class is slightly distinguishable from the others, which have high overlaps. 

The Water class in co-pol VV is distinct, while in cross-pol VH, all classes tend to occupy a 

narrow response. This is consistent with other texture features in VH, indicating poor features 

for classification. 

The GLCM - Variance is shown in Figure 7.5, which is a measure of heterogeneity based 

on the mean and scattering of pixel values within the GLCM window. However, class 

distributions have high overlap in both co-pol and cross-pol. 
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X-band GLCM – 
Homogeneity VV 

 

C-band GLCM – 
Homogeneity VV 

 

C-band GLCM – 
Homogeneity VH 

 

   
Figure 7.4 Example of the textural features: homogeneity calculated using GLCM for X-band 

(ICEYE) and C-band (Sentinel-1). 

X-band GLCM – Variance 
VV 

 

C-band GLCM – Variance 
VV 

 

C-band GLCM – Variance 
VH 

 

   
Figure 7.5 Example of the textural features: variance calculated using GLCM for X-band 

(ICEYE) and C-band (Sentinel-1). 



98 
 

7.2.3.3 Speckle Divergence 

Speckle divergence from SAR log-intensity was used in [179] to delineate settlement areas 

that have the characteristics of bright intensity and high speckle divergence. This is in contrast 

with natural areas like agricultural fields, shrubland, or forest which often show relatively 

homogeneous texture. The class histogram in Figure 7.6 shows that all classes except Water 

still have overlaps. Artificial structures like buildings were shown in bright points. However, 

between High density and Medium density classes, there is no visible distinction. 

X-band Speckle Divergence 
– VV 

 

C-band Speckle Divergence 
– VV 

 

C-band Speckle Divergence 
– VH 

 

   
Figure 7.6 Speckle Divergence 

7.3 Methodology 
7.3.1 Workflow 

The general methodological workflow is shown in Figure 7.7 and listed below:  

 Datasets preparation 

o SAR data preprocessing with needed corrections.  

o Intensity SAR image calculation. 

o Training samples preparation according to urban classes’ definition. 

 Main data processing and analysis 

o Speckle divergence and texture performance of SAR data. 

o SAR image classification using supervised and unsupervised approaches. 

o Evaluation of the accuracy and comparison of the results. 
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Figure 7.7. A schematic showing the preprocessing workflow in SNAP for both Sentinel-1 
and ICEYE images. 

Each SAR GRD image is preprocessed similarly using the Sentinel Application Platform 

(SNAP 9.0.0). It starts with radiometric calibration which converts the measured backscatter 

intensity to the normalized radar cross-section ߪ by considering the global incidence angle of 

the image and other sensor-specific characteristics [192]. A speckle filter was applied using Lee 

Sigma with a 7x7 window size which, ideally, smooths homogenous areas while preserving 

edges between different surfaces. Finally, terrain correction was applied to geocode the radar 

image into the WGS 84 coordinate system and to correct for geometric distortions using the 

Shuttle Radar Topology Mission (SRTM) data as the Digital Elevation Model (DEM). Using 

SNAP, the speckle divergence was computed from the log intensity of VV and VH polarization, 

with a window size of 15x15. Meanwhile, GLCM was calculated using a window size of 9x9. 

7.3.2 Algorithms 
7.3.2.1 Unsupervised Classification 

K-means clustering does not require the digitization of the training samples but only the 

number of clusters to group similar SAR features and it was used as unsupervised classification. 
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The K-means algorithm divided the SAR image into spatial clusters based on the mutual 

proximity of the data points. K-means' approach goal is grouping together identical data points 

and finding the underlying patterns. K-means searches a fixed number of clusters in a dataset 

to accomplish this aim [193]. The values of backscatter intensities and texture indices can be 

used to distinguish buildings from all other land cover types. Fourteen input clusters were 

established for the K-means algorithm which will be then aggregated to the target six classes 

based on the UA definition. The number of iterations after several trials was set at 20, which 

proved to be high enough to identify the clusters and sufficiently distinguish them in a 

meaningful processing time.  

7.3.2.2 Supervised Semantic Segmentation 

Segmentation involves partitioning the image into regions based on similarity and assigning 

a single class to every pixel. In this study, the UNet [194] architecture combined with 

ResNest26d [195] as the backbone was used for the segmentation model. 

Tiling was performed on the large SAR raster with a tile size of 512 by 512 pixels with 128 

pixels of overlaps for ICEYE images, and 256 pixels of overlaps for Sentinel-1 images. 

Overlaps increase training data since the AOI is not so large, especially for Sentinel-1 images 

with only 10 m/pixel spatial resolution. The UA polygons were rasterized with respect to each 

SAR dataset, generating label masks. NoData regions in the label masks were set to 0, whereas 

the first label class starts from 1 (High density) all the way to 6 (Water). During training, class 

0 was ignored when computing the loss for optimization and when computing the metrics for 

evaluation. Both the training area and validation area in Figure 7.1 were preprocessed similarly. 

The model was trained on an RTX A4000 GPU with 16GB of VRAM. The training pipeline 

was developed using the Pytorch framework and the Segmentation Models library [137]. Adam 

[138] was used as the optimizer with a learning rate of 10ିଷ. A step decaying scheduler modifies 

the learning rate with a decaying factor of 0.95. The batch size of 32 was used. From empirical 

findings, the reception field or the input size of the CNN was chosen to be 256 by 256 pixels.  

7.3.3 Evaluation 
The validation part of the study areas was used (pink area in Figure 7.1) to estimate the 

classification performance of the algorithms. In terms of binary classification, TP, FP, FN, and 

TN can be calculated. In multi-class classification tasks, the binary classification metrics for 

each class are computed, treating a target class as positive while the rest are merged as negative. 

The IoU was used as a pixel-based metric for classification accuracy assessment. In multiclass 
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segmentation, a single pixel can belong to one of the six classes (plus background as NoData). 

Therefore, the mean IoU (mIoU) from all classes is taken as the single metric to report. 

7.4 Results 
Two algorithms were compared: unsupervised clustering using K-means and supervised 

segmentation using Unet as the neural network architecture and ResNest as the backbone. To 

simplify the naming of algorithms, the former will be referred to as K-means and the latter as 

Unet. Table 7.3 shows the comparison of both algorithms on different SAR features. The IoU 

of each class is averaged to obtain the mIoU, which has a range from 0.0 to 1.0. 

Unsupervised clustering has the advantage of not requiring any labels. However, K-means 

obtained poor results compared to Unet. As explained in the previous section, most of the UA 

classes have low separability in all the SAR features, making it difficult for a clustering 

algorithm that relies on the similarity of pixel values to distinguish them. Specifically for the 

classes High density, Medium density, and Industrial areas, they tend to show as bright lines 

from building edges. K-means mostly predicted these three classes as the same class. 

Predictions for each class are shown in the confusion matrix in Figure 7.8. The K-means results 

typically produce two large clusters, where one of them matches the wide distribution of class 

Vegetation. Results in C-band are better because of the dual polarization and smoother texture 

compared to X-band. 

Table 7.3. The classification results as mean value of IoU 

Location London Warsaw 

Algorithm SAR data Features mIoU mIoU 

K-Means 

X-band VV 
Speckle Divergence 0.1437 0.0922 

GLCM 0.1520 0.1284 

C-band VV,VH 
Speckle Divergence 0.1600 0.1936 

GLCM 0.2379 0.2023 

Unet+RestNest26 

X-band VV 

Log-Intensity 0.4471 0.4084 

Speckle Divergence 0.4172 0.3691 

GLCM 0.4387 0.4059 

C-band VV,VH 

Log-Intensity 0.3573 0.3588 

Speckle Divergence 0.3093 0.3054 

GLCM 0.3407 0.3528 

 

For Unet, the supervised learning algorithm and the powerful feature extractor of the CNN 

enables more pattern matching than just similar pixel values. Higher frequency changes within 
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dense areas were classified well by Unet, as shown in the confusion matrix in Figure 7.9. In 

most cases, class Vegetation had the best IoU score due to being the majority class at 33% of 

the total area, followed by class High density at 26%. Other classes are usually misclassified 

(false positives) in either of these 2 majority classes as shown by the brighter color in columns 

1 and 5. Due to additional details, class Road networks are significantly better classified in X-

band compared to C-band. 

 

Figure 7.8. Confusion matrix for predictions from K-means with features (left) X-band 
GLCM (right) C-band GLCM 

 

Figure 7.9. Confusion matrix for predictions from Unet with features (left) X-band Log 
Intensity and (right) C-band Log Intensity 

A comparison of prediction results using the same area in Figure 7.2 is shown in Figure 

7.10. It is noticeable that large homogenous objects such as the river were well classified using 

K-means. For Unet, the raster needs to be cut into smaller patches to maintain a reasonable 

number of weights or parameters. This means large objects were divided into different tiles, 
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making it difficult to do continuous prediction despite the object being relatively homogenous. 

This can be solved by increasing the tile size input to cover large objects. As C-band covers 

much more area within the tile, large objects were classified better, as shown in the first column 

in Figure 7.10.  

 

Figure 7.10. Prediction results from algorithms in Table 7.3. 

7.4.1 Data Augmentation and Combining Features 
Applying DA increases variations from a limited training set and can improve training of 

neural networks. Geometrical transformations were applied randomly to the input SAR images. 

Empirical results show that the best geometric DA methods were Random Rotation and 

Random Resized Crop. The former applies a rotation from the center of the input tile at a 

random angle between -30° and 30°. The latter randomly crops an area between 30-90% of the 

original tile size and resizes it to 256 by 256 pixels, which is the selected height and width of 

the input image for the Unet model. 

As shown in Table 7.4, DA improves mIoU, by 0.03-0.05. This was consistent with other 

combinations of using Log Intensity with either speckle divergence or GLCM features. Similar 

to Table 7.3, the single feature of X-band Log Intensity yielded the best performance of 0.4742 

mIoU. Combination from other features did not improve the score, most likely because they 

were derived from Log Intensity, therefore not providing new information. The robustness of 

CNN itself was able to efficiently extract features related to texture and edges. The comparison 

between combined features is shown in Figure 7.11. 
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Table 7.4. Unet evaluation results with Data Augmentation (DA) and combinations of 
different SAR features. 

Location London Warsaw 

Combination X band Features mIoU mIoU 

Comb 1 Log-Intensity + DA 0.4742 0.4538 

Comb 2 Log-Intensity + Speckle divergence + DA 0.4663 0.4514 

Comb 3 Log-Intensity + Speckle divergence + GLCM + DA 0.4636 0.4462 

 

Figure 7.11. Prediction results from algorithms in Table 7.4. 

7.5 Discussion 
It is worth noting that most X-band SAR satellites work in VHR single polarization mode, 

while most C-band SAR satellites can work in polarimetric mode (either dual, quad, or compact 

polarization) [177]. Isolating the effects of the SAR frequency band is not possible due to 

different acquisition settings, therefore, analysis is focused on different details and polarimetric 

features from the C and X-band SAR data. 

7.5.1 Weak descriptive features from single and dual polarization SAR 
Despite more details in X-band SAR, only utilizing the intensity values and textural features 

derived from it are still weak at distinguishing land use classes. This is mainly due to similar 

backscatter values for completely different objects, e.g. the specular reflectance of water has a 

similar low backscatter as shadows created by the blind spot of high-rise buildings. Several 

studies have pointed out the limitations of single or dual polarization SAR for classification 

[183] [196]. The Unet algorithm performed better than the K-means clustering algorithm since 

it learned iteratively the relationship between labels and the underlying radar signature. Neural 

networks consider not only spectral and textural features, but also geometric and multiscale 

neighboring information, similar to what a human SAR analyst would do.  

7.5.2 Trade-off between object size and details 
The tile size of the C-band SAR image is 100 times larger than the X-band due to the 

different spatial resolution (10 m/pixel compared to 1 m/pixel respectively). Large objects such 



105 
 

as the Queen Mary Reservoir (see Figure 7.12) were delineated better in C-band. Moreover, the 

finer details and the shorter wavelength SAR mean that the X-band radar is more sensitive to 

small surface roughness. As a result, the water surface appears to have a non-homogenous 

texture due to backscatter from small ripples. The trade-off is with finer details, smaller objects 

such as residential buildings and roads are still observable, whereas in C-band, only the highway 

or rail stations are still visible. This is reflected in the confusion matrix for K-means in Figure 

7.8. For Unet predictions, in C-band, class Water has higher True Positives of 0.75 compared 

to 0.63 of the same class in X-band. However, class Roads and railway networks were classified 

poorly compared to using X-band. 

 

Figure 7.12. One of the largest reservoirs of fresh water in London, the Queen Mary 
Reservoir. (a) Optical image from Bing Maps Satellite Imagery [28], (b) X-band log intensity 
SAR image in VV channel, (c) C-band log intensity SAR image in the color composite of R: 
VV, G: VH and B: VV-VH, (d) UA labels, (e) prediction from Unet on X-band Log intensity 

SAR image and (f) prediction from Unet on C-band Log intensity SAR image. 

7.5.3 Reliability of Urban Atlas 
Objects labeled in the UA dataset were affected by their patterns of land use distribution and 

the organization of city blocks. This labeling process which follows the function of the land 

complicates the task of classifying different physical appearances as similar classes. Take 

example in Figure 7.2, in the optical image there are visible structures in the river slightly north, 
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which are Teddington Lock and Teddington Weir. Those structures, however, were not 

categorized as specific classes and were similarly labeled as Water.  

Another large object with non-homogenous patterns is Heathrow Airport. In Figure 7.13, 

the SAR intensity image from X-band and C-band shows the two parallel runways facing the 

West-East direction represented in dark color due to specular scattering. Bright patterns in the 

center represent complex infrastructure such as airport terminals, bus stations, and hotels. 

Classifying these complex and different patterns as the same class will be difficult for any 

algorithm. 

 

Figure 7.13. Heathrow Airport shown in (a) Optical image from Bing Maps Satellite Imagery 
[28], (b) UA labels where it is included as class Industrial area, colored in gray, (c) X-band 

log intensity SAR image in VV channel, and (d) C-band log intensity SAR image in the color 
composite of R: VV, G: VH and B: VV-VH. 

Based on the Urban Atlas mapping guidelines [176], urban density can be categorized based 

on the degree of soil sealing, or the covering of the ground by impermeable material. The High 

density class used in this study is defined by the Continuous Urban Fabric class from UA, with 

>80% of soil sealing. Meanwhile the Medium density class were aggregated based on the 

Discontinuous Urban Fabric classes, which have different degrees of soil sealing based on 

imperviousness layer [188]. This complex label scheme can be challenging for the interpreter 

to evaluate. An example of inconsistency is shown in Figure 7.14. A selected polygon 

categorized as >80% of soil sealing from UA is shown in cyan. The local building footprint 

dataset from the National Topographic Database (BDOT10k), highlighted in red, shows the real 

estimate of only 30% soil sealing. 
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Figure 7.14. Aerial orthophoto of Warsaw from ESRI World Imagery [197] and a selected UA 
polygon (in cyan) labeled as Continuous Urban Fabric (>80%). Highlighted in red are 
building footprints from BDOT10k dataset. In this example, there is roughly only 30% 

occupied of artificial surfaces.  

7.5.4 Discussion on accuracy 
Zhu et al. [198] tested the classification of urban land cover types such as Low density 

residential, High density residential, and Commercial/industrial based on PALSAR and optical 

data. SAR data inclusion improved the overall classification by 1.1%. Relatively high 

producer's (80.83%) and user's (74.68%) accuracies were observed for High density residential, 

while the producer's and user's accuracies for Low density residential and 

Commercial/industrial were below average (approximately 70% or less). The Low density 

residential class was frequently misclassified as Forest. Commercial/industrial was sometimes 

misclassified as High density residential [198]. Similar results of K-means classification on 

0.32-0.45 level of mIoU were reached on UAVSAR data for three different urban areas [193]. 

Results from Corbane [199] show that SAR backscatter from an urban environment is highly 

dependent on radar frequency, polarization, and viewing geometry. Therefore SAR imagery 

allows detecting urban features in a complementary way, but it can also become blind towards 

other buildings and structures depending on the viewing geometry, the incidence angle, and the 

urban fabric [199], [200]. 

7.6 Conclusion 
In this study, the single polarization X-band and dual polarization C-band SAR were 

compared for LULC classification in urban areas. Results show that X-band with higher detail 

is more suitable for urban analysis despite more SAR features being present in the dual 

polarization C-band.  
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The supervised segmentation using Unet was significantly better at classifying the land 

classes compared to the unsupervised K-means clustering. The low separability of classes in 

every SAR feature is reflected in the poor performance of K-means, achieving the best 

performance at 0.2379 mIoU using the C-band GLCM features. Meanwhile, Unet obtained the 

best performance at 0.4742 mIoU using X-band log-intensity feature. Other derived SAR 

features did not improve the score of Unet, most likely due to the robustness of convolutional 

neural networks as feature extractors. The use of UA as a reference source is rather limited but 

incorporated with data augmentation methods could improve its potential for training 

algorithms for LULC classification using a single polarization SAR image. To summarize, it 

can be concluded that the last thesis of the dissertation has been confirmed. 
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8 Conclusion 

As laid out in the introduction, this work has been devoted to verifying the feasibility of 

using deep learning algorithms to develop a monitoring system for disaster mitigation. Large 

events that result in significant changes in the urban landscape can be detected using SAR 

satellite imagery with global coverage. Once detected, a SAR instrument with a smaller swath 

but improved spatial resolution can provide input data for the classification and localization of 

man-made infrastructures. The continuous monitoring and automated analysis benefits from 

SAR technology that can measure through typical occlusions and poor weather conditions that 

follow a disastrous event. 

8.1 Research summary 
In this thesis, deep learning methods were explored for various urban analyses using SAR 

images. This section summarizes the key findings from experimental chapters in this 

dissertation, which include extraction of building footprints, large event detection from 

multitemporal data, and LULC classification. 

Works in automated analysis of SAR data are closely related to progress in computer vision 

of natural images where more efficient or performant methods are tested out. This leads to a 

domain gap between natural images containing simple RGB channels to SAR images 

representing radar echoes. A closer domain gap was demonstrated to improve transfer learning 

techniques, where pre-trained weights from optical remote sensing images yield better 

performance in SAR than using pre-trained weights directly from natural images [49]. 

To solve the issue of limited training data that causes overfit in supervised learning, the 

effects of various data augmentation methods on SAR were explored. Pixel-based 

transformations in SAR were not as effective as in natural-colored images. Geometrical 

transformations were shown to be effective at delaying overfit except for vertical flip and corner 

rotations, which cause extreme displacement of shadows and layovers compared to the building 

footprint labels [15]. 

The increase in many SAR satellites results in an abundance of unlabeled remote sensing 

data. To take advantage of unlabeled data, multitemporal Sentinel-1 images were used to train 

an autoencoder in an unsupervised way. The ability to detect general events was demonstrated 

by the autoencoder, trained only on SAR images of flood events, and was able to identify 

changes in SAR images of wildfires and landslides. The autoencoder can learn representations 
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of the training data by reconstructing the input without any labels. The distances in 

representations from a pair of adjacent timeframe images were used to identify changes between 

them [18], [19]. 

The neural network considers not only spectral and textural features, but also geometric and 

multiscale neighboring information. This was demonstrated in the task of LULC classification 

where the importance of several SAR features as input to a classifier was analyzed. A clustering 

algorithm with richer textural feature inputs had improved detection for minority classes, while 

for neural networks, derived features did not improve overall performance. Despite relying only 

on a single polarization VHR SAR, the high details provide more features for identifying man-

made structures. The solution was tested on two urban areas with diverse topographical 

structures, yielding the best performance of 0.4742 mIoU. 

In general, the DL algorithms proposed in this study demonstrate the feasibility of 

automated analysis using SAR images. The various urban landscape and sensor configuration 

validates the generalization capability of the algorithm. 

8.2 Future work 
Due to limited data acquisition, methods in this dissertation were not explored yet using 

other SAR modes, such as polarimetric, interferometric, or a combination of both. As reviewed 

in Chapter 4, information on scattering mechanisms can better distinguish objects in urban 

scenes. Collecting multitemporal data spanning an event will be challenging, but if such an 

opportunity exists, it will be a valuable resource for disaster analysis using SAR. 

Current research trends in the computer vision field are moving towards Semi-Supervised 

Learning (SSL) which can take advantage of the abundance of unlabeled data in SAR. This 

process though, is known to require significant computing resources for multi-day training even 

using GPU clusters. There is a chance that large companies that have the resources could 

develop a foundation model on SAR using SSL methods. This could significantly reduce 

resources as practitioners can further fine-tune those pre-train foundation models in SAR-

specific tasks. 

Alternatively, more labeled data can be generated using a SAR simulator, which can obtain 

various acquisition modes that would be expensive to perform in real-world scenarios. 

Variability can significantly improve the generalization capabilities of neural networks. 

Potentially expanding beyond the image layer to understanding the underlying physical models 

[201].  
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